首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human manganese poisoning or manganism results in damage to the substantia nigra of the brain stem, a drop in the level of the inhibitory neurotransmitter dopamine, and symptoms resembling those of Parkinson's disease. Manganic (Mn3+) manganese ions were shown to be readily produced by O-2 in vitro and spontaneously under conditions obtainable in the human brain. Mn3+ as its pyrophosphate complex was shown to rapidly and efficiently carry out four-electron oxidations of dopamine, its precursor dopa (3,4-dihydroxyphenylalanine), and its biosynthetic products epinephrine and norepinephrine. Mn3+-pyrophosphate was shown to specifically attack dihydroxybenzene derivatives, but only those with adjacent hydroxyl groups. Further, the addition of Mn2+-pyrophosphate to a system containing a flux of O2- and dopamine greatly accelerated the oxidation of dopamine. The oxidation of dopamine by Mn3+ neither produced nor required O2, and Mn3+ was far more efficient than Mn2+, Mn4+ (MnO2), O2-, or H2O2 in oxidizing the catecholamines. A higher oxidation state, Mn(OH)3, formed spontaneously in an aqueous Mn(OH)2 precipitate and slowly darkened, presumably being oxidized to MnO2. Like reagent MnO2, it weakly catalyzed dopamine oxidation. However, both MnO2 preparations showed dramatically increased abilities to oxidize dopamine in the presence of pyrophosphate due to enhancement of the spontaneous formation of the Mn3+ complex. These results strongly suggest that the pathology of manganese neurotoxicity is dependent on the ease with which simple Mn3+ complexes are formed under physiological conditions and the efficiency with which they destroy catecholamines.  相似文献   

2.
Manganese oxidation by Leptothrix discophora.   总被引:13,自引:2,他引:11       下载免费PDF全文
Cells of Leptothrix discophora SS1 released Mn2+-oxidizing factors into the medium during growth in batch culture. Manganese was optimally oxidized when the medium was buffered with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) at pH 7.5. Manganese-oxidizing activity in the culture medium in which this strain had been grown previously was sensitive to heat, phosphate, Tris, NaN3, HgCl2 NaCl, sodium dodecyl sulfate, and pronase; 0.5 mol of O2 was consumed per mol of MnO2 formed. During Mn2+ oxidation, protons were liberated. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two protein-containing bands were detected in the spent culture medium. One band had an apparent molecular weight of 110,000 and was predominant in Mn2+-oxidizing activity. The second product (Mr 85,000) was only detected in some cases and probably represents a proteolytic breakdown moiety of the 110,000-Mr protein. The Mn2+-oxidizing factors were associated with the MnO2 aggregates that had been formed in spent culture medium. After solubilization of this MnO2 with ascorbate, Mn2+-oxidizing activity could be recovered.  相似文献   

3.
The physicochemical properties of a soluble green complex obtained from the reaction of MnO2 and desferrioxamine have been investigated. The superoxide dismutase mimetic activity of this complex has been previously reported [D. Darr et al. (1987) Arch. Biochem. Biophys. 258, 351-355]. Optical spectra, titration experiments, and metal analyses are consistent with the presence of one gram-atom Mn3+ per mole of desferrioxamine. At least one of the hydroxamate groups is oxidized in the green complex. Reaction of Desferal with MnO2 in the presence of ascorbate yields a more active, pink complex. This pink complex is more stable toward EDTA, suggesting that in it all three hydroxamate groups are intact and ligated to the manganese. The physicochemical properties of these complexes were examined and structures are suggested.  相似文献   

4.
The interaction of superoxide ion and ascorbate anion with anthracycline antibiotics (adriamycin and aclacinimycin A) as well as with their Fe3+ complexes has been studied in aprotic and protic media. It was found that both superoxide and ascorbate reduce anthracyclines to deoxyaglycons via a one-electron transfer mechanism under all conditions studied. The reaction of ascorbate anion with adriamycin and aclacinomycin A in aqueous solution proceeded only in the presence of Fe3+ ions; it is supposed that an active catalytic species was Fe3+ adriamycin. It is also supposed that the reduction of anthracycline antibiotics by O,7 and ascorbate in cells may increase their anticancer effect.  相似文献   

5.
Oxidized and reduced manganese cytochromes c, Mn Cyt c+ and Mn Cyt c, have been synthesized. Mn Cyt c+ and Fe Cyt c+ have identical electrophoretic and ion exchange mobilities. Mn Cyt c+ does not bind F-, CN-, or N3- ions; Mn Cyt c does not bind CO or O2. Mn Cyt c is very rapidly autooxidized by O2 even at -50 degrees. The manganese ion is readily dissociated from Mn Cyt c at acidic pH values. Both Mn Cyt c and Mn Cyt c+ are high spin complexes with 3d5 S = 5/2 and 3d4 S = 2 electronic configurations, respectively. The epr spectrum of Mn Cyt c is rhombic with (formula: see text). Both oxidized and reduced Mn Cyt c react with NO; the former reaction is reversible and the product has the following epr spectral parameters: (formula: see text). There is no superhyperfine interaction observable with the NO ligand, and the unpaired electron density is estimated to be mostly in the metal ion d xy orbital. The structure is best formulated as Mn Cyt c (NO)+. The half-reduction potential of Mn Cyt c is + 60 +/- 40 mV. It is neither oxidized by cytochrome oxidase nor reduced by NADH, NADPH, or succinate cytochrome reductase. These physical, chemical, and enzymic properties of manganese cytochromes c suggest a five-coordinate metalloporphyrin prosthetic group with the manganese ion situated significantly out-of-plane toward the side of His-18.  相似文献   

6.
The composition and catalase-like activity of Mn2+ complexes with bicarbonate were investigated with voltammetry and kinetic methods (by the rate of O2 production from H2O2). Three linear sections were revealed on the dependence of the reduction potential of Mn2+ on logarithm of bicarbonate concentration (logC(NaHCO3)) having slopes equal to 0 mV/logC(NaHCO3), -14 mV/logC(NaHCO3), and -59 mV/logC(NaHCO3), corresponding to Mn2+ aqua complex (Mn2+(aq)) and to Mn2+-bicarbonate complexes of the composition [Mn2+(HCO3(-))]+ (at concentration of HCO3(-) 10-100 mM) and [Mn2+(HCO3(-))2]0 (at concentration of HCO3(-) 100-600 mM). Comparison of HCO3(-) concentration needed for the catalase-like activity of Mn2+ with the electrochemical data showed that only electroneutral complex Mn2+(HCO3(-))2 catalyzed decomposition of H2O2, whereas positively charged Mn2+(aq) complex and [Mn2+(HCO3(-))]+ were not active. The catalase-like activity of Mn2+ did not appear upon substitution of anions of carbonic acids (acetate and formate) for HCO3(-). The rate of O2 production in the system Mn2+-HCO3(-)-H2O2 (pH 7.4) is proportional to the second power of Mn2+ concentration and to the fourth power of HCO3(-) concentration that indicates simultaneous involvement of two Mn2+(HCO3(-))2 complexes in the reaction of H2O2 decomposition.  相似文献   

7.
6-Hydroxydopamine (6-OHDA) neurotoxicity has often been related to the generation of free radicals. Here we examined the effect of the presence of iron (Fe(2+) and Fe(3+)) and manganese and the mediation of ascorbate, L-cysteine (CySH), glutathione (GSH), and N-acetyl-CySH on hydroxyl radical (*OH) production during 6-OHDA autoxidation. In vitro, the presence of 800 nM iron increased (> 100%) the production of *OH by 5 microM 6-OHDA while Mn(2+) caused a significant reduction (72%). The presence of ascorbate (100 microM) induced a continuous generation of *OH while the presence of sulfhydryl reductants (100 microM) limited this production to the first minutes of the reaction. In general, the combined action of metal + antioxidant increased the *OH production, this effect being particularly significant (> 400%) with iron + ascorbate. In vivo, tyrosine hydroxylase immunohistochemistry revealed that intrastriatal injections of rats with 6-OHDA (30 nmol) + ascorbate (600 nmol), 6-OHDA + ascorbate + Fe(2+) (5 nmol), and 6-OHDA + ascorbate + Mn(2+) (5 nmol) caused large striatal lesions, which were markedly reduced (60%) by the substitution of ascorbate by CySH. Injections of Fe(2+) or Mn(2+) alone showed no significant difference to those of saline. These results clearly demonstrate the role of ascorbate as an essential element for the neurotoxicity of 6-OHDA, as well as the diminishing action of sulfhydryl reductants, and the negligible effect of iron and manganese on 6-OHDA neurotoxicity.  相似文献   

8.
The X-ray structure of staphylococcal nuclease suggests octahedral coordination of the essential Ca2+, with Asp-21, Asp-40, and Thr-41 of the enzyme providing three of the six ligands [Cotton, F. A., Hazen, E. E., Jr., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555]. The Asp-40 codon was mutated to Gly-40 on the gene that had been cloned into Escherichia coli, and the mutant (D40G) and wild-type enzymes were both purified from E. coli by a simple procedure. The D40G mutant forms a (5 +/- 2)-fold weaker binary complex with Ca2+ as found by kinetic analysis and by Ca2+ binding studies in competition with Mn2+, a linear competitive inhibitor. Similarly, as found by electron paramagnetic resonance (EPR), Mn2+ binds to the D40G mutant with a 3-fold greater KD than that found with the wild-type enzyme. These differences in KD are increased by saturation of staphylococcal nuclease with the DNA substrate such that KmCa is 10-fold greater and KIMn is 15-fold greater for the mutant than for the wild-type enzyme, although KMDNA is only 1.5-fold greater in the mutant. The six dissociation constants of the ternary enzyme-Mn2+-nucleotide complexes of 3',5'-pdTp and 5'-TMP were determined by EPR and by paramagnetic effects on 1/T1 of water protons, and the dissociation constants of the corresponding Ca2+ complexes were determined by competition with Mn2+. Only small differences between the mutant and wild-type enzymes are noted in K3, the dissociation constant of the nucleotides from their respective ternary complexes. 3',5'-pdTp raises the affinities of both wild-type and mutant enzymes for Mn2+ by factors of 47 and 31, respectively, while 5'-TMP raises the affinities of the enzymes for Mn2+ by smaller factors of 6.8 and 4.4, respectively. Conversely, Mn2+ raises the affinities of both wild-type and mutant enzymes for the nucleotides by 1-2 orders of magnitude. Analogous effects are observed in the ternary Ca2+ complexes. Dissociation constants of Ca2+ and Mn2+ from binary and ternary complexes, measured by direct binding studies, show reasonable agreement with those obtained by kinetic analysis. Structural differences in the ternary metal complexes of the D40G mutant are revealed by a 31-fold decrease in Vmax with Ca2+ and by 1.4-3.1-fold decreases in the enhancement of 1/T1 of water protons with Mn2+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The role of metals in the reactivity of HO2/O2- with compounds of biological interest is discussed. A scheme that illustrates the various reactions that a transition metal complex can undergo when reacting with HO2/O2- is presented in terms of ligand and pH effects. The decomposition of hydrogen peroxide catalysed by ferrous ion is reviewed in terms of new rate data for the reactions of ferric ion with perhydroxyl (HO2) and superoxide (O2-) radicals. The new results support a mechanism proposed by Barb and his coworkers (W.G. Barb, J.H. Baxendale, P. George & K.R. Hargrave, Trans. Faraday Soc. 47, 462-500 (1951] and negates the occurrence of the Haber-Weiss reaction in this system. In the presence of MnII complexes, O2- reacts to form MnO2+ transients and MnIII complexes. Their reactivities with ascorbate, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and NADH-NADPH is discussed.  相似文献   

10.
Manganese (Mn) is an essential trace element and trivalent Mn complexes have been used as oxidation catalysts and enzyme mimetics. We studied the cytotoxicity of Mn(III) derivatives of citrate, pyrophosphate and salicylene diamine (respectively, MnCit, MnPPi and EUK8) toward HeLa cells stressed by ultraviolet irradiation and the effect of the co-administration of ascorbate and para-amino salicylate (PAS) on cell viability. Metal complexes enhanced the lethality of irradiated cells, and this effect was even more pronounced when ascorbate was co-administered with Mn(III) species. The active role of Mn(III) compounds in the antitumor activity was demonstrated by the treatment of the cells with the chelator PAS, which restored the viability of both non-irradiated and UV-irradiated cells. The association of the Mn(III) metallodrugs with radiation and an antioxidant proved to be a very effective approach to chemotherapy.  相似文献   

11.
It is found that dark reduction of photooxidized primary electron donor P870+ in reaction centres from purple anoxygenic bacteria (two non-sulphur Fe-oxidizing Rhodovulum iodosum and Rhodovulum robiginosum, Rhodobacter sphaeroides R-26 and sulphur alkaliphilic Thiorhodospira sibirica) is accelerated upon the addition of Mn2+ jointly with bicarbonate (30-75 mM). The effect is not observed if Mn2+ and HCO3(-) have been replaced by Mg2+ and HCO2(-), respectively. The dependence of the effect on bicarbonate concentration suggests that formation of Mn2+-bicarbonate complexes, Mn(HCO3)+ and/or Mn(HCO3)2, is required for re-reduction of P870+ with Mn2+. The results are considered as experimental evidence for a hypothesis on possible participation of Mn-bicarbonate complexes in the evolutionary origin of oxygenic photosynthesis in the Archean era.  相似文献   

12.
The oxidation effects of Mn2+, Mn3+ or MnO2 on dopamine can be studied in vitro and, therefore, this offers a model of the auto-oxidation process that appears naturally in neurons causing Parkinson's disease. The use of MnO, as an oxidizer in aqueous solution at pH 7 causes the oxidation of catecholamines (L-dopa, dopamine, noradrenaline and adrenaline) to melanin. However, this work shows that, in water at pH 6-7, the oxidation of catecholamines by MnO2 in the presence of sodium thiosulphate (Na2S2O3) occurs by other mechanisms. For dopamine and L-dopa, MLCT complexes were formed with bands at 312, 350 (sh), 554 (sh) nm, and an intense band at 597 nm (epsilon approximately/= 4 x 10(3) M(-1) cm(-1)) and at ca. 336, 557 (sh) nm, and an intense band at 597 nm (epsilon approximately 6 x 10(3) M(-1) cm(-1)), respectively. The latter transitions were assigned to d(pi)-->pi*-SQ. Noradrenaline and adrenaline do not form this blue complex in solution, but generate soluble oxidized compounds. The resonance Raman spectra of these complexes in solution showed bands at 950, 1006, 1258, 1378, 1508 and 1603 cm(-1) for the complex derivation of L-dopa and at 948, 1010, 1255, 1373, 1510 and 1603 cm(-1) for the dopamine-derived compound. The most intense Raman band at ca. 1378 cm(-1) was assigned to C-O stretching with major C1-C2 characteristics and indicated that dopamine and L-dopa do not occur complexed with manganese in the catecholate or quinone form, but suggests an intermediate compound such as an anionic o-semiquinone (SQ-), forming a complex such as [Mn(II)(SQ-)3]-. All enhanced Raman frequencies are characteristic of the benzenic ring without the participation of the aminic nitrogen. A mechanism is proposed for the formation of the dopamine and L-dopa complexes and a computational simulation was performed to support it.  相似文献   

13.
Twelve substituted metalloporphyrins (MPs), some of which have been previously characterized with respect to superoxide dismutase and peroxynitrite decomposing activities, were evaluated for their ability to scavenge peroxynitrite in vitro at 37 degrees C. Because the overall effectiveness of MPs as catalytic peroxynitrite scavengers is a function of (1) how fast they react with peroxynitrite, (2) how fast they cycle back to the starting compound, and (3) how well they contain or quench the reactive intermediates generated, all of these properties were evaluated and compared directly under the same conditions. Of the various MPs tested, only the iron and manganese porphyrins showed significant reactivity with peroxynitrite. The Mn(IV) intermediates resulting from oxidation by peroxynitrite were relatively stable and rereduction to the Mn(III) forms was rate-limiting to catalytic decomposition of peroxynitrite. However, in the presence of oxidizeable substrates like phenolics, rereduction of Mn(IV) forms occurred very rapidly and both the Mn- and Fe-porphyrins catalyzed nitration and oxidation by peroxynitrite. Mn- and Fe-porphyrins enhanced the yield of nitrated phenolics by peroxynitrite as much as 5-fold at pH 7.4 and up to 12-fold at pH 9. 1, while total oxidative yield was more than doubled. Nitration enhancement by MPs was effectively inhibited by ascorbate, glutathione, or serum, although much higher concentrations of ascorbate were required to inhibit nitration catalyzed by either Mn or Fe tetramethylpyridyl porphyrin. Catalysis of peroxynitrite nitration by MPs appears to proceed via a radical-mediated reaction mechanism whereby the phenolic substrate rapidly reduces Mn(IV) = O or Fe[IV] = O to the +3 state to yield phenoxyl radical which then combines with the other primary product, nitrogen dioxide. Based on the rate constants and the proposed reaction mechanism, it is reasonable to suggest that Mn and Fe porphyrins could detoxify peroxynitrite in vivo by efficiently trapping the relatively unreactive peroxynitrite anion and, in effect, channeling it into a single reaction pathway which could then be more effectively scavenged by cellular reductants like ascorbate.  相似文献   

14.
1. In the presence of dihydroxyfumarate, horseradish peroxidase catalyses the conversion of p-coumaric acid into caffeic acid at pH 6. This hydroxylation is completely inhibited by superoxide dismutase. 2. Dihydroxyfumarate cannot be replaced by ascorbate H2O2, NADH, cysteine or sulphite. Peroxidase can be replaced by high (10 mM) concentrations of FeSO4, but this reaction is almost unaffected by superoxide dismutase. 3. Hydroxylation by the peroxidase/dihydroxyfumarate system is completely inhibited by low concentrations of Mn2+ or Cu2+. It is proposed that this is due to the ability of these metal ions to react with the superoxide radical O2--. 4. Hydroxylation is partially inhibited by mannitol, Tris or ethanol and completely inhibited by formate. This seems to be due to the ability of these reagents to react with the hydroxyl radical -OH. 5. It is concluded that O2-- is generated during the oxidation of dihydroxyfumarate by peroxidase and reacts with H2O2 to produce hydroxyl radicals, which then convert p-coumaric acid into caffeic acid.  相似文献   

15.
Interaction between [Co(NH3)5Cl]Cl2, [Co(NH3)4Cl2]Cl and L-ascorbic acid has been investigated in aqueous solution and solid complexes of the type [Co(NH3)5 ascorbate]Cl2 X H2O and [Co(NH3)4 ascorbate]Cl2 X H2O have been isolated and characterized by 13C-NMR, FT-IR and electron absorption spectroscopy. Spectroscopic and other evidence suggested that the sugar anion binds monodentately in the [Co(NH3)5 ascorbate]2+ cation via the ionized O3 oxygen atom and bidentately in [Co(NH3)4 ascorbate]2+ through the O1 and O4 oxygen atoms, resulting in a six-coordinate geometry around the Co(III) ion. The intermolecular sugar hydrogen-bonding network is perturbed upon sugar metalation and the sugar moiety shows a similar conformation to that of the sodium ascorbate compound in these series of cobalt-ammine complexes.  相似文献   

16.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

17.
Chromium (Cr) potentiates the effects of insulin and a role for insulin in ascorbic acid transport has been reported. Therefore, the effects of Cr and ascorbate depletion on tissue ascorbic acid and14C distribution and excretion after a14C ascorbate dose were investigated in guinea pigs. As utilization of dietary Cr is affected by interaction with other minerals, tissue manganese (Mn), zinc (Zn), copper (Cu), and iron (Fe) were examined. For 20 wk, 40 weanling animals were fed either a Cr-deficient (<0.06 μg Cr/g diet, ?Cr) or a Cr-adequate (2 μg Cr from CrCl3/g diet, +Cr) casein-based diet and were given 1 mg ascorbate/d (?C) or 10 mg ascorbate/d (+C) for 20 wk. Animals fed the Cr-depleted diet had decreased weight at 20 wk (p<0.01). Six hours before necropsy, animals were dosed by micropipette with 1.8 μCi ofl-[carboxyl-14C] ascorbic acid and placed in metabolic cages. Ascorbate supplementation increased Fe concentrations in most analyzed tissues, hepatic14C, tissue ascorbate and Mn concentration in the adrenal and testes, but decreased the concentrations of Cu in the kidney and Mn in the spleen. Liver Mn concentration was higher and kidney Mn concentration was lower in +Cr animals. Interactions between Cr and ascorbic acid affected Mn concentrations in bone and brain. These results indicate that ascorbate and Cr may affect Mn distribution. Chromium supplementation decreased plasma cortisol, brain14C and the amount of14C expired as carbon dioxide. These findings suggest that dietary Cr may affect ascorbic acid metabolism and the metabolic response to stress.  相似文献   

18.
The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional are investigated as applied to studies of mixed-valent multinuclear oxomanganese complexes. Benchmark calculations involve the analysis of structural, electronic and magnetic properties of di-, tri- and tetra-nuclear Mn complexes, previously characterized both chemically and spectroscopically, including the di-mu-oxo bridged dimers [Mn(III)Mn(IV)(mu-O)(2)(H(2)O)(2)(terpy)(2)](3+) (terpy=2,2':6,2'-terpyridine) and [Mn(III)Mn(IV)(mu-O)(2)(phen)(4)](3+) (phen=1,10-phenanthroline), the Mn trimer [Mn(3)O(4)(bpy)(4)(H(2)O)(2)](4+) (bpy=2,2'-bipyridine), and the tetramer [Mn(4)O(4)L(6)](+) with L=Ph(2)PO(2)(-). Furthermore, the density functional theory (DFT) B3LYP level is applied to analyze the hydrated Mn(3)O(4)CaMn cluster completely ligated by water, OH(-), Cl(-), carboxylate and imidazole ligands, analogous to the '3+1 Mn tetramer' of the oxygen-evolving complex of photosystem II. It is found that DFT/B3LYP predicts structural and electronic properties of oxomanganese complexes in pre-selected spin-electronic states in very good agreement with X-ray and magnetic experimental data, even when applied in conjunction with rather modest basis sets. However, it is conjectured that the energetics of low-lying spin-states is beyond the capabilities of the DFT/B3LYP level, constituting a limitation to mechanistic studies of multinuclear oxomanganese complexes where until now the performance of DFT/B3LYP has raised little concern.  相似文献   

19.
The noble shift in open-circuit potential exhibited by microbially colonized stainless steel (ennoblement) was investigated by examining the relationship among surface colonization, manganese deposition, and open-circuit potential for stainless steel coupons exposed to batch cultures of the manganese-depositing bacterium Leptothrix discophora. Open-circuit potential shifted from -100 to +330 mV(infSCE) as a biofilm containing 75 nmol of MnO(infx) cm(sup-2) formed on the coupon surface but changed little further with continued MnO(infx) deposition up to 270 nmol cm(sup-2). Increased open-circuit potential corresponded to decreasing Mn(II) concentration in solution and to increased MnO(infx) accumulation and attached cell density on the coupon surfaces. MnO(infx) deposition was attributable to biological activity, and Mn(II) was observed to enhance cell attachment. The experimental results support a mechanism of ennoblement in which open-circuit potential is fixed near +350 mV(infSCE) by the cathodic activity of biomineralized MnO(infx).  相似文献   

20.
Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O(2)(·-), reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP(5+), MnTnHex-2-PyP(5+), and a meta isomer MnTnHex-3-PyP(5+), which differ greatly with regard to their metal-centered reduction potential, E(1/2) (Mn(III)P/Mn(II)P) and lipophilicity, were explored. Employing Mn(III)P/Mn(II)P redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP(5+) was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP(5+) is most prone to oxidative degradation with H(2) , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号