首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood coagulation is triggered when the serine protease factor VIIa (fVIIa) binds to cell surface tissue factor (TF) to form the active enzyme-cofactor complex. TF binding to fVIIa allosterically augments the enzymatic activity of fVIIa toward macromolecular substrates and small peptidyl substrates. The mechanism of this enhancement remains unclear. Our previous studies have indicated that soluble TF (sTF; residues 1-219) alters the pH dependence of fVIIa amidolytic activity (Neuenschwander et al. (1993) Thromb. Haemostasis 70, 970), indicating an effect of TF on critical ionizations within the fVIIa active center. The pKa values and identities of these ionizable groups are unknown. To gain additional insight into this effect, we have performed a detailed study of the pH dependence of fVIIa amidolytic activity. Kinetic constants of Chromozym t-PA (MeSO(2)-D-Phe-Gly-Arg-pNA) hydrolysis at various pH values were determined for fVIIa alone and in complex with sTF. The pH dependence of both enzymes was adequately represented using a diprotic model. For fVIIa alone, two ionizations were observed in the free enzyme (pK(E1) = 7.46 and pK(E2) = 8.67), with at least a single ionization apparent in the Michaelis complex (pK(ES1) similar 7.62). For the fVIIa-TF complex, the pK(a) of one of the two important ionizations in the free enzyme was shifted to a more basic value (pK(E1) = 7.57 and pK(E2) = 9.27), and the ionization in the Michaelis complex was possibly shifted to a more acidic pH (pK(ES1) = 6.93). When these results are compared to those obtained for other well-studied serine proteases, K(E1) and K(ES1) are presumed to represent the ionization of the overall catalytic triad in the absence and presence of substrate, respectively, while K(E2) is presumed to represent ionization of the alpha-amino group of Ile(153). Taken together, these results would suggest that sTF binding to fVIIa alters the chemical environment of the fVIIa active site by protecting Ile(153) from deprotonation in the free enzyme while deprotecting the catalytic triad as a whole when in the Michaelis complex.  相似文献   

2.
Glutathione transferase (GST) A3-3 is the most efficient human steroid double-bond isomerase known. The activity with Delta(5)-androstene-3,17-dione is highly dependent on the phenolic hydroxyl group of Tyr-9 and the thiolate of glutathione. Removal of these groups caused an 1.1 x 10(5)-fold decrease in k(cat); the Y9F mutant displayed a 150-fold lower isomerase activity in the presence of glutathione and a further 740-fold lower activity in the absence of glutathione. The Y9F mutation in GST A3-3 did not markedly decrease the activity with the alternative substrate 1-chloro-2,4-dinitrobenzene. Residues Phe-10, Leu-111, and Ala-216 selectively govern the activity with the steroid substrate. Mutating residue 111 into phenylalanine caused a 25-fold decrease in k(cat)/K(m) for the steroid isomerization. The mutations A216S and F10S, separate or combined, affected the isomerase activity only marginally, but with the additional L111F mutation k(cat)/K(m) was reduced to 0.8% of that of the wild-type value. In contrast, the activities with 1-chloro-2,4-dinitrobenzene and phenethylisothiocyanate were not largely affected by the combined mutations F10S/L111F/A216S. K(i) values for Delta(5)-androstene-3,17-dione and Delta(4)-androstene-3,17-dione were increased by the triple mutation F10S/L111F/A216S. The pK(a) of the thiol group of active-site-bound glutathione, 6.1, increased to 6.5 in GST A3-3/Y9F. The pK(a) of the active-site Tyr-9 was 7.9 for the wild-type enzyme. The pH dependence of k(cat)/K(m) of wild-type GST A3-3 for the isomerase reaction displays two kinetic pK(a) values, 6.2 and 8.1. The basic limb of the pH dependence of k(cat) and k(cat)/K(m) disappears in the Y9F mutant. Therefore, the higher kinetic pK(a) reflects ionization of Tyr-9, and the lower one reflects ionization of glutathione. We propose a reaction mechanism for the double-bond isomerization involving abstraction of a proton from C4 in the steroid accompanied by protonation of C6, the thiolate of glutathione serving as a base and Tyr-9 assisting by polarizing the 3-oxo group of the substrate.  相似文献   

3.
Human fibroblast activation protein (FAP), an integral membrane serine protease, was produced in insect cells as a hexa-His-tagged protein using a recombinant baculovirus expression system. Two isoforms of FAP, glycosylated and nonglycosylated, were identified by Western blotting using an anti-His-tag antibody and separated by lectin chromatography. The glycosylated FAP was purified to near homogeneity using immobilized metal affinity chromatography and was shown to have both postprolyl dipeptidyl peptidase and postgelatinase activities. In contrast, the nonglycosylated isoform demonstrated no detectable gelatinase activity by either zymography or a fluorescence-based gelatinase activity assay. The kinetic parameters of the dipeptidyl peptidase activity for glycosylated FAP were determined using dipeptide Ala-Pro-7-amino-trifluoromethyl-coumarin as the substrate. The k(cat) is 2.0 s(-1) and k(cat)/K(m) is 1.0 x 10(4) M(-1) s(-1) at pH 8.5. The pH dependence of k(cat) reveals two ionization groups with pK(a1) of 7.0 and pK(a2) of 11.0. The pH profile of k(cat)/K(m) yields similar results with pK(a1) 6.2 and pK(a2) 11.0. The neutral pK(a1) is associated with His at the active site. The basic pK(a2) might be contributed from an ionization group that is not involved directly in catalysis, instead associated with the stability of the active site structure.  相似文献   

4.
Spies MA  Toney MD 《Biochemistry》2003,42(17):5099-5107
Alanine racemase catalyzes the pyridoxal phosphate-dependent interconversion of the D- and L-isomers of alanine. Previous studies have shown that the enzyme employs a two-base mechanism in which Lys39 and Tyr265 are the acid/base catalysts. It is thus possible that stereoisomerization of the external aldimine intermediates occurs through a concerted double proton transfer without the existence of a distinct carbanionic intermediate. This possibility was tested by the application of multiple kinetic isotope effect (KIE) methodology to alanine racemase. The mutual dependence of primary substrate and solvent deuterium KIEs has been measured using equilibrium perturbation-type experiments. The conceptually straightforward measurement of the substrate KIE in H(2)O is complemented with a less intuitive protium washout perturbation-type measurement in D(2)O. The primary substrate KIE in the D --> L direction at 25 degrees C is reduced from 1.297 in H(2)O to 1.176 in D(2)O, while in the L --> D direction it is reduced from 1.877 in H(2)O to 1.824 in D(2)O. Similar reductions are also observed at 65 degrees C, the temperature to which the Bacillus stearothermophilus enzyme is adapted. These data strongly support a stepwise racemization of stereoisomeric aldimine intermediates in which a substrate-based carbanion is an obligatory intermediate. The ionizations observed in k(cat)/K(M) pH profiles have been definitively assigned based on the DeltaH(ion) values of the observed pK(a)'s with alanine and on the pH dependence of k(cat)/K(M) for the alternative substrate serine. The acidic pK(a) in the bell-shaped curve is due to the phenolic hydroxyl of Tyr265, which must be unprotonated for reaction with either isomer of alanine. The basic pK(a) is due to the substrate amino group, which must be protonated to react with Tyr265-unprotonated enzyme. A detailed reaction mechanism incorporating these results is proposed.  相似文献   

5.
Markham GD  Bock CL  Schalk-Hihi C 《Biochemistry》1999,38(14):4433-4440
Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the K+-dependent reaction IMP + NAD + H2O --> XMP + NADH + H+ which is the rate-limiting step in guanine nucleotide biosynthesis. The catalytic mechanism of the human type-II IMPDH isozyme has been studied by measurement of the pH dependencies of the normal reaction, of the hydrolysis of 2-chloro-IMP (which yields XMP and Cl- in the absence of NAD), and of inactivation by the affinity label 6-chloro-purine-ribotide (6-Cl-PRT). The pH dependence of the IMPDH reaction shows bell-shaped profiles for kcat and the kcat/Km values for both IMP and NAD, illustrating the involvement of both acidic and basic groups in catalysis. Half-maximal kcat values occur at pH values of 7.2 and 9.8; similar pK values of 6.9 and 9.4 are seen in the kcat/Km profile for NAD. The kcat/Km profile for IMP, which binds first in the predominantly ordered kinetic mechanism, shows pK values of 8.1 and 7.3 for acidic and basic groups, respectively. None of the kinetic pK values correspond to ionizations of the free substrates and thus reflect ionization of the enzyme or enzyme-substrate complexes. The rate of inactivation by 6-Cl-PRT, which modifies the active site sulfhydryl of cysteine-331, increases with pH; the pK of 7.5 reflects the ionization of the sulfhydryl in the E.6-Cl-PRT complex. The pKs of the acids observed in the IMPDH reaction likely also reflect ionization of the cysteine-331 sulfhydryl which adds to C-2 of IMP prior to NAD reduction. The kcat and kcat/Km values for hydrolysis of 2-Cl-IMP show a pK value of 9.9 for a basic group, similar to that seen in the overall reaction, but do not exhibit the ionization of an acidic group. Surprisingly, the rates of 2-Cl-IMP hydrolysis and of inactivation by 6-Cl-PRT are not stimulated by K+, in contrast to the >100-fold K+ activation of the IMPDH reaction. Apparently the enigmatic role of K+ lies in the NAD(H)-dependent segment of the IMPDH reaction. To evaluate the importance of hydrogen bonding in substrate binding, several deamino- and deoxy-analogues of IMP were tested as substrates and inhibitors. Only 2'-deoxy-IMP was a substrate; the other compounds tested were competitive inhibitors with Ki values at most 10-fold greater than the KD for IMP, illustrating the greater importance of hydrogen-bonding interactions in the chemistry of the IMPDH reaction than simply in nucleotide binding.  相似文献   

6.
Human vascular adhesion protein-1 (VAP-1) is an endothelial copper-dependent amine oxidase involved in the recruitment and extravasation of leukocytes at sites of inflammation. VAP-1 is an important therapeutic target for several pathological conditions. We expressed soluble VAP-1 in HEK293 EBNA1 cells at levels suitable for detailed mechanistic studies with model substrates. Using the model substrate benzylamine, we analyzed the steady-state kinetic parameters of VAP-1 as a function of solution pH. We found two macroscopic pK(a) values that defined a bell-shaped plot of turnover number k(cat,app) as a function of pH, representing ionizable groups in the enzyme-substrate complex. The dependence of (k(cat)/K(m))(app) on pH revealed a single pK(a) value (~9) that we assigned to ionization of the amine group in free benzylamine substrate. A kinetic isotope effect (KIE) of 6 to 7.6 on (k(cat)/K(m))(app) over the pH range of 6 to 10 was observed with d(2)-benzylamine. Over the same pH range, the KIE on k(cat) was found to be close to unity. The unusual KIE values on (k(cat)/K(m))(app) were rationalized using a mechanistic scheme that includes the possibility of multiple isotopically sensitive steps. We also report the analysis of quantitative structure-activity relationships (QSAR) using para-substituted protiated and deuterated phenylethylamines. With phenylethylamines we observed a large KIE on k(cat,app) (8.01 ± 0.28 with phenylethylamine), indicating that C-H bond breakage is limiting for 2,4,5-trihydroxyphenylalanine quinone reduction. Poor correlations were observed between steady-state rate constants and QSAR parameters. We show the importance of combining KIE, QSAR, and structural studies to gain insight into the complexity of the VAP-1 steady-state mechanism.  相似文献   

7.
Phosphite dehydrogenase (PTDH) catalyzes the NAD-dependent oxidation of phosphite to phosphate, a reaction that is 15 kcal/mol exergonic. The enzyme belongs to the family of D-hydroxy acid dehydrogenases. Five other family members that were analyzed do not catalyze the oxidation of phosphite, ruling out the possibility that this is a ubiquitous activity of these proteins. PTDH does not accept any alternative substrates such as thiophosphite, hydrated aldehydes, and methylphosphinate, and potential small nucleophiles such as hydroxylamine, fluoride, methanol, and trifluoromethanol do not compete with water in the displacement of the hydride from phosphite. The pH dependence of k(cat)/K(m,phosphite) is bell-shaped with a pK(a) of 6.8 for the acidic limb and a pK(a) of 7.8 for the basic limb. The pK(a) of 6.8 is assigned to the second deprotonation of phosphite. However, whether the dianionic form of phosphite is the true substrate is not clear since a reverse protonation mechanism is also consistent with the available data. Unlike k(cat)/K(m,phosphite), k(cat) and k(cat)/K(m,NAD) are pH-independent. Sulfite is a strong inhibitor of PTDH that is competitive with respect to phosphite and uncompetitive with respect to NAD(+). Incubation of the enzyme with NAD(+) and low concentrations of sulfite results in a covalent adduct between NAD(+) and sulfite in the active site of the enzyme that binds very tightly. Fluorescent titration studies provided the apparent dissociation constants for NAD(+), NADH, sulfite, and the sulfite-NAD(+) adduct. Substrate isotope effect studies with deuterium-labeled phosphite resulted in small normal isotope effects (1.4-2.1) on both k(cat) and k(cat)/K(m,phosphite) at pH 7.25 and 8.0. Solvent isotope effects (SIEs) on k(cat) are similar in size; however, the SIE of k(cat)/K(m,phosphite) at pH 7.25 is significantly larger (4.4), whereas at pH 8.0, it is the inverse (0.6). The pH-rate profile of k(cat)/K(m,phosphite), which predicts that the observed SIEs will have a significant thermodynamic origin, can account for these effects.  相似文献   

8.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

9.
The zinc and cobalt forms of the prototypic gamma-carbonic anhydrase from Methanosarcina thermophila were characterized by extended X-ray absorption fine structure (EXAFS) and the kinetics were investigated using steady-state spectrophotometric and (18)O exchange equilibrium assays. EXAFS results indicate that cobalt isomorphously replaces zinc and that the metals coordinate three histidines and two or three water molecules. The efficiency of either Zn-Cam or Co-Cam for CO(2) hydration (k(cat)/K(m)) was severalfold greater than HCO(3-) dehydration at physiological pH values, a result consistent with the proposed physiological function for Cam during growth on acetate. For both Zn- and Co-Cam, the steady-state parameter k(cat) for CO(2) hydration was pH-dependent with a pK(a) of 6.5-6.8, whereas k(cat)/K(m) was dependent on two ionizations with pK(a) values of 6.7-6.9 and 8.2-8.4. The (18)O exchange assay also identified two ionizable groups in the pH profile of k(cat)/K(m) with apparent pK(a) values of 6.0 and 8.1. The steady-state parameter k(cat) (CO(2) hydration) is buffer-dependent in a saturable manner at pH 8. 2, and the kinetic analysis suggested a ping-pong mechanism in which buffer is the second substrate. The calculated rate constant for intermolecular proton transfer is 3 x 10(7) M(-1) s(-1). At saturating buffer concentrations and pH 8.5, k(cat) is 2.6-fold higher in H(2)O than in D(2)O, suggesting that an intramolecular proton transfer step is at least partially rate-determining. At high pH (pH > 8), k(cat)/K(m) is not dependent on buffer and no solvent hydrogen isotope effect was observed, consistent with a zinc hydroxide mechanism. Therefore, at high pH the catalytic mechanism of Cam appears to resemble that of human CAII, despite significant structural differences in the active sites of these two unrelated enzymes.  相似文献   

10.
To elucidate a detailed catalytic mechanism for nitrile hydratases (NHases), the pH and temperature dependence of the kinetic constants k(cat) and K(m) for the cobalt-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) were examined. PtNHase was found to exhibit a bell-shaped curve for plots of relative activity versus pH at pH 3.2-11 and was found to display maximal activity between pH 7.2 and 7.8. Fits of these data provided pK(E)(S1) and pK(E)(S2) values of 5.9 +/- 0.1 and 9.2 +/- 0.1 (k(cat)' = 130 +/- 1 s(-1)), respectively, and pK(E)(1) and pK(E)(2) values of 5.8 +/- 0.1 and 9.1 +/- 0.1 (k(cat)'/K(m)' = (6.5 +/- 0.1) x 10(3) s(-1) mm(-1)), respectively. Proton inventory studies indicated that two protons are transferred in the rate-limiting step of the reaction at pH 7.6. Because PtNHase is stable at 60 degrees C, an Arrhenius plot was constructed by plotting ln(k(cat)) versus 1/T, providing E(a) = 23.0 +/- 1.2 kJ/mol. The thermal stability of PtNHase also allowed DeltaH(0) ionization values to be determined, thus helping to identify the ionizing groups exhibiting the pK(E)(S1) and pK(E)(S2) values. Based on DeltaH(0)(ion) data, pK(E)(S1) is assigned to betaTyr(68), whereas pK(E)(S2) is assigned to betaArg(52), betaArg(157), or alphaSer(112) (NHases are alpha(2)beta(2)-heterotetramers). A combination of these data with those previously reported for NHases and synthetic model complexes, along with sequence comparisons of both iron- and cobalt-type NHases, allowed a novel catalytic mechanism for NHases to be proposed.  相似文献   

11.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   

12.
To gain insight into the role of the strictly conserved histidine residue, H178, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H178A mutant enzyme was prepared. Metal-reconstituted H178A binds only one equivalent of Co(II) or Fe(II) tightly with affinities that are identical to the WT enzyme based on kinetic and isothermal titration calorimetry (ITC) data. Electronic absorption spectra of Co(II)-loaded H178A EcMetAP-I indicate that the active site divalent metal ion is pentacoordinate, identical to the WT enzyme. These data indicate that the metal binding site has not been affected by altering H178. The effect of altering H178 on activity is, in general, due to a decrease in k(cat). The k(cat) value for Co(II)-loaded H178A decreased 70-fold toward MGMM and 290-fold toward MP-p-NA compared to the WT enzyme, while k(cat) decreased 50-fold toward MGMM for the Fe(II)-loaded H178A enzyme and 140-fold toward MP-p-NA. The K(m) values for MGMM remained unaffected, while those for MP-p-NA increased approximately 2-fold for Co(II)- and Fe(II)-loaded H178A. The k(cat)/K(m) values for both Co(II)- and Fe(II)-loaded H178A toward both substrates ranged from approximately 50- to 580-fold reduction. The pH dependence of log K(m), log k(cat), and log(k(cat)/K(m)) of both WT and H178A EcMetAP-I were also obtained and are identical, within error, for H178A and WT EcMetAP-I. Therefore, H178A is catalytically important but is not required for catalysis. Assignment of one of the observed pK(a) values at 8.1 for WT EcMetAP-I was obtained from plots of molar absorptivity at lambda(max(640)) vs pH for both WT and H178A EcMetAP-I. Apparent pK(a) values of 8.1 and 7.6 were obtained for WT and H178A EcMetAP-I, respectively, and were assigned to the deprotonation of a metal-bound water molecule. The data reported herein provide support for the key elements of the previously proposed mechanism and suggest that a similar mechanism can apply to the enzyme with a single metal in the active site.  相似文献   

13.
Badarau A  Page MI 《Biochemistry》2006,45(35):10654-10666
The kinetics and mechanism of hydrolysis of the native zinc and metal substituted Bacillus cereus (BcII) metallo-beta-lactamase have been investigated. The pH and metal ion dependence of k(cat) and k(cat)/K(m), determined under steady-state conditions, for the cobalt substituted BcII catalyzed hydrolysis of cefoxitin, cephaloridine, and cephalexin indicate that an enzyme residue of apparent pK(a) 6.3 +/- 0.1 is required in its deprotonated form for metal ion binding and catalysis. The k(cat)/K(m) for cefoxitin and cephalexin with cadmium substituted BcII is dependent on two ionizing groups on the enzyme: one of pK(a1) = 8.7 +/- 0.1 required in its deprotonated form and the other of pK(a2) = 9.3 +/- 0.1 required in its protonated form for activity. The pH dependence of the competitive inhibition constant, K(i), for CdBcII with l-captopril indicates that pK(a1) = 8.7 +/- 0.1 corresponds to the cadmium-bound water. For the manganese substituted BcII, the pH dependence of k(cat)/K(m) for benzylpenicillin, cephalexin, and cefoxitin similarly indicated the importance of two catalytic groups: one of pK(a1) = 8.5 +/- 0.1 which needs to be deprotonated and the other of pK(a2) = 9.4 +/- 0.1 which needs to be protonated for catalysis; the pK(a1) was assigned to the manganese-bound water. The rate was metal ion concentration dependent at the highest manganese concentrations used (10(-)(3) M). The metal substituted species have similar or higher catalytic activities compared with the zinc enzyme, albeit at pHs above 7. Interestingly, with cefoxitin, a very poor substrate for ZnBcII, both k(cat) and k(cat)/K(m) increase with increasing pK(a) of the metal-bound water, in the order Zn < Co < Mn < Cd. A higher pK(a) for the metal-bound water for cadmium and manganese BCII leads to more reactive enzymes than the native zinc BcII, suggesting that the role of the metal ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.  相似文献   

14.
It has been proposed that "Glu238" within the N-box of pyruvate dehydrogenase kinase (PDK) is a base catalyst. The pH dependence of k(cat) of Arabidopsis thaliana PDK indicates that ionizable groups with pK values of 6.2 and 8.4 are necessary for catalysis, and the temperature dependence of these values suggests that the acidic pK is due to a carboxyl- or imidazole-group. The E238 and K241 mutants had elevated K(m,ATP) values. The acidic pK value of the E238A mutant was shifted to 5.5. The H233A, L234H, and L234A mutants had the same pK values as wild-type AtPDK, contrary to the previous proposal of a "Glu-polarizing" His. Instead, we suggest that the conserved Glu, Lys, and Asn residues of the N-box contribute to coordinating Mg2+ in a position critical for formation of the PDK-MgATP-substrate ternary complex.  相似文献   

15.
The pH dependence of the spectra and of the oxidation-reduction potential of three cytochromes c2, from Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides and Rhodomicrobium vannielii, were studied. A single alkaline pK was observed for the spectral changes in all three ferricytochromes. In Rps. capsulata cytochrome c2 this spectroscopic pK corresponds to the pK observed in the dependence of oxidation-reduction potential on pH. For the other two cytochromes the oxidation-reduction potential showed a complex dependency on pH which can be fitted to theoretical curves involving three ionizations. The third ionization corresponds to the ionization observed in the spectroscopic studies but the first two occur without changes in the visible spectra. The possible structural bases for these ionizations are discussed.  相似文献   

16.
Royo M  Fitzpatrick PF 《Biochemistry》2005,44(18):7079-7084
In mammalian cells, the flavoprotein polyamine oxidase catalyzes a key step in the catabolism of polyamines, the oxidation of N1-acetylspermine and N1-acetylspermidine to spermidine and putrescine, respectively. The mechanism of the mouse enzyme has been studied with N1,N12-bisethylspermine (BESPM) as a substrate. At pH 10, the pH optimum, the limiting rate of reduction of the flavin in the absence of oxygen is comparable to the k(cat) value for turnover, establishing reduction as rate-limiting. Oxidation of the reduced enzyme is a simple second-order reaction. No intermediates are seen in the reductive or oxidative half-reactions. The k(cat) value decreases below a pK(a) of 9.0. The k(cat)/K(m) value for BESPM exhibits a bell-shaped pH profile, with pK(a) values of 9.8 and 10.8. These pK(a) values are assigned to the substrate nitrogens. The rate constant for the reaction of the reduced enzyme with oxygen is not affected by a pH between 7.5 and 10. Active site residue Tyr430 is conserved in the homologous protein monoamine oxidase. Mutation of this residue to phenylalanine results in a 6-fold decrease in the k(cat) value and the k(cat)/K(m) value for oxygen due to a comparable decrease in the rate constant for flavin reduction. This moderate change is not consistent with this residue forming a tyrosyl radical during catalysis.  相似文献   

17.
The steady-state kinetic parameters for epimerization of UDP-galactose by UDP-galactose 4-epimerase from Escherichia coli (GalE), Y149F-GalE, and S124A-GalE have been measured as a function of pH. The deuterium kinetic isotope effects for epimerization of UDP-galactose-C-d(7) by these enzymes have also been measured. The results show that the activity of wild-type GalE is pH-independent in the pH range of 5.5-9.3, and there is no significant deuterium kinetic isotope effect in the reaction of UDP-galactose-C-d(7). It is concluded that the rate-limiting step for epimerization by wild-type GalE is not hydride transfer and must be either a diffusional process or a conformational change. Epimerization of UDP-galactose-C-d(7) by Y149F-GalE proceeds with a pH-dependent deuterium kinetic isotope effect on k(cat) of 2.2 +/- 0.4 at pH 6.2 and 1.1 +/- 0.5 at pH 8.3. Moreover, the plot of log k(cat)/K(m) breaks downward on the acid side with a fitted value of 7.1 for the pK(a). It is concluded that the break in the pH-rate profile arises from a change in the rate-limiting step from hydride transfer at low pH to a conformational change at high pH. Epimerization of UDP-galactose-C-d(7) by S124A-GalE proceeds with a pH-independent deuterium kinetic isotope effect on k(cat) of 2.0 +/- 0.2 between pH 6 and 9. Both plots of log k(cat) and log k(cat)/K(m) display pH dependence. The plot of log k(cat) versus pH breaks downward with a pK(a) of 6.35 +/- 0.10. The plot of log k(cat)/K(m) versus pH is bell-shaped, with fitted pK(a) values of 6.76 +/- 0.09 and 9.32 +/- 0.21. It is concluded that hydride transfer is rate-limiting, and the pK(a) of 6.7 for free S124A-GalE is assigned to Tyr 149, which displays the same value of pK(a) when measured spectrophotometrically in this variant. Acid-base catalysis by Y149F-GalE is attributed to Ser 124, which is postulated to rescue catalysis of proton transfer in the absence of Tyr 149. The kinetic pK(a) of 7.1 for free Y149F-GalE is lower than that expected for Ser 124, as proven by the pH-dependent kinetic isotope effect. Epimerization by the doubly mutated Y149F/S124A-GalE proceeds at a k(cat) that is lower by a factor of 10(7) than that of wild-type GalE. This low rate is attributed to the synergistic actions of Tyr 149 and Ser 124 in wild-type GalE and to the absence of any internal catalysis of hydride transfer in the doubly mutated enzyme.  相似文献   

18.
Wang J  Edmondson DE 《Biochemistry》2011,50(35):7710-7717
Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Because the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits K(i) values similar to those of human MAO A. The pH profile of k(cat) for rat MAO A shows a pK(a) of 8.2 ± 0.1 for the benzylamine ES complex and pK(a) values of 7.5 ± 0.1 and 7.6 ± 0.1 for the ES complexes with p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine, respectively. In contrast to the human enzyme, the rat enzyme exhibits a single pK(a) value (8.3 ± 0.1) with k(cat)/K(m) for benzylamine versus pH and pK(a) values of 7.8 ± 0.1 and 8.1 ± 0.2 for the ascending limbs, respectively, of k(cat)/K(m) versus pH profiles for p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine and 9.3 ± 0.1 and 9.1 ± 0.2 for the descending limbs, respectively. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A has large deuterium kinetic isotope effects on k(cat) and on k(cat)/K(m). These effects are pH-independent and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log k(cat) with the electronic substituent parameter (σ) at pH 7.5 and 9.0 show a dominant contribution with positive ρ values (1.2-1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues for rat MAO A shows an increased van der Waals volume (V(w)) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits functional properties similar but not identical with those of the human enzyme and provide additional support for C-H bond cleavage via a polar nucleophilic mechanism.  相似文献   

19.
Ralph EC  Fitzpatrick PF 《Biochemistry》2005,44(8):3074-3081
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of secondary amino acids such as N-methyltryptophan or N-methylglycine (sarcosine). MTOX is one of several flavin-dependent amine oxidases whose chemical mechanism is still debated. The kinetic properties of MTOX with the slow substrate sarcosine were determined. Initial rate data are well-described by the equation for a ping-pong kinetic mechanism, in that the V/K(O)()2 value is independent of the sarcosine concentration at all accessible concentrations of oxygen. The k(cat)/K(sarc) pH profile is bell-shaped, with pK(a) values of 8.8 and about 10; the latter value matches the pK(a) value of the substrate nitrogen. The k(cat) pH profile exhibits a single pK(a) value of 9.1 for a group that must be unprotonated for catalysis. There is no significant solvent isotope effect on the k(cat)/K(sarc) value. With N-methyl-(2)H(3)-glycine as the substrate, there is a pH-independent kinetic isotope effect on k(cat), k(cat)/K(sarc), and the rate constant for flavin reduction, with an average value of 7.2. Stopped-flow spectroscopy with both the protiated and deuterated substrate failed to detect any intermediates between the enzyme-substrate complex and the fully reduced enzyme. These results are used to evaluate proposed chemical mechanisms.  相似文献   

20.
To obtain insight into the functional properties of Treponema denticola cystalysin, we have analyzed the pH- and ligand-induced spectral transitions, the pH dependence of the kinetic parameters, and the substrate specificity of the purified enzyme. The absorption spectrum of cystalysin has maxima at 418 and 320 nm. The 320 nm band increases at high pH, while the 418 nm band decreases; the apparent pK(spec) of this spectral transition is about 8.4. Cystalysin emitted fluorescence at 367 and 504 nm upon excitation at 320 and 418 nm, respectively. The pH profile for the 367 nm emission intensity increases above a single pK of approximately 8.4. On this basis, the 418 and 320 nm absorbances have been attributed to the ketoenamine and substituted aldamine, respectively. The pH dependence of both log k(cat) and log k(cat)/K(m) for alpha,beta-elimination reaction indicates that a single ionizing group with a pK value of approximately 6.6 must be unprotonated to achieve maximum velocity. This implies that cystalysin is more catalytically competent in alkaline solution where a remarkable portion of its coenzyme exists as inactive aldamine structure. Binding of substrates or substrate analogues to the enzyme over the pH range 6-9.5 converts both the 418 and 320 nm bands into an absorbing band at 429 nm, assigned to the external aldimine in the ketoenamine form. All these data suggest that the equilibrium from the inactive aldamine form of the coenzyme shifts to the active ketoenamine form on substrate binding. In addition, reinvestigation of the substrate spectrum of alpha,beta-elimination indicates that cystalysin is a cyst(e)ine C-S lyase rather than a cysteine desulfhydrase as claimed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号