首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain, EAT-2, is expressed in macrophages and B lympho cytes. The EAT-2 structure in complex with a phosphotyrosine peptide containing a sequence motif with Tyr281 of the cytoplasmic tail of CD150 is very similar to the structure of SH2D1A complexed with the same peptide. This explains the high affinity of EAT-2 for the pTyr motif in the cytoplasmic tail of CD150 but, unlike SH2D1A, EAT-2 does not bind to non-phosphorylated CD150. EAT-2 binds to the phosphorylated receptors CD84, CD150, CD229 and CD244, and acts as a natural inhibitor, which interferes with the recruitment of the tyrosine phosphatase SHP-2. We conclude that EAT-2 plays a role in controlling signal transduction through at least four receptors expressed on the surface of professional antigen-presenting cells.  相似文献   

2.
The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.  相似文献   

3.
Anthrax edema toxin (EdTx) is an AB-type toxin that binds to anthrax toxin receptors on target cells via the binding subunit, protective Ag (PA). Edema factor, the enzymatic A subunit of EdTx, is an adenylate cyclase. We found that nasal delivery of EdTx enhanced systemic immunity to nasally coadministered OVA and resulted in high OVA-specific plasma IgA and IgG (mainly IgG1 and IgG2b). The edema factor also enhanced immunity to the binding PA subunit itself and promoted high levels of plasma IgG and IgA responses as well as neutralizing PA Abs. Mice given OVA and EdTx also exhibited both PA- and OVA-specific IgA and IgG Ab responses in saliva as well as IgA Ab responses in vaginal washes. EdTx as adjuvant triggered OVA- and PA-specific + T cells which secreted IFN-gamma and selected Th2-type cytokines. The EdTx up-regulated costimulatory molecule expression by APCs but was less effective than cholera toxin for inducing IL-6 responses either by APCs in vitro or in nasal washes in vivo. Finally, nasally administered EdTx did not target CNS tissues and did not induce IL-1 mRNA responses in the nasopharyngeal-associated lymphoepithelial tissue or in the olfactory bulb epithelium. Thus, EdTx derivatives could represent an alternative to the ganglioside-binding enterotoxin adjuvants and provide new tools for inducing protective immunity to PA-based anthrax vaccines.  相似文献   

4.
The lack of an effective TB vaccine hinders current efforts in combating the TB pandemic. One theory as to why BCG is less protective in tropical countries is that exposure to non-tuberculous mycobacteria (NTM) reduces BCG efficacy. There are currently several new TB vaccines in clinical trials, and NTM exposure may also be relevant in this context. NTM exposure cannot be accurately evaluated in the absence of specific antigens; those which are known to be present in NTM and absent from M. tuberculosis and BCG. We therefore used a bioinformatic pipeline to define proteins which are present in common NTM and absent from the M. tuberculosis complex, using protein BLAST, TBLASTN and a short sequence protein BLAST to ensure the specificity of this process. We then assessed immune responses to these proteins, in healthy South Africans and in patients from the United Kingdom and United States with documented exposure to NTM. Low level responses were detected to a cluster of proteins from the mammalian cell entry family, and to a cluster of hypothetical proteins, using ex vivo ELISpot and a 6 day proliferation assay. These early findings may provide a basis for characterising exposure to NTM at a population level, which has applications in the field of TB vaccine design as well as in the development of diagnostic tests.  相似文献   

5.
6.
Specific d anti-b and b anti-a suppressor T cells induced by intravenous injection of mice with gamma-irradiated allogenic lymphoid cells, are not a homogenous population of cells as shown by their selective absorption on macrophage monolayers of various H-2 haplotypes. This is proved by separation of suppressor T cells to two subpopulations, at least, each of them being able to react with the products of only one (K or D) end of the H-2 complex. Moreover, the fine specificity study of d anti-b suppressor T cells enriched by elution from macrophage monolayers of different H-2 haplotypes, demonstrated these suppressors to represent a set of narrow-specific clones, each of them carried receptors reactive in a selective fashion with a particular determinant of the H-2 molecule irrespective of this linkage with other products of the H-2 complex. Two such clones reactive with H-2a and H-2f third-party antigens, respectively, were isolated by elution from the corresponding cell monolayers, each of them accounted for about 1.5% of the total d anti-b suppressor population. These data are discussed in the light of differences of suppressor T cells from other T cell subclasses and their resemblance to B cells with respect to the clonal structure and the receptor specificity.  相似文献   

7.
A recombinant replication-defective adenovirus vector that can overexpress the ectodomain of the envelope protein of dengue virus type 2 (NGC strain) has been constructed. This virus was immunogenic in mice and elicited dengue virus type 2 specific B- and T-cell responses. Sera from immunized mice contained neutralizing antibodies that could specifically recognize dengue virus type 2 and neutralize its infectivity in vitro, indicating that this approach has the potential to confer protective immunity. In vitro stimulation of splenocytes (from immunized mice) with dengue virus type 2 resulted in a significant proliferative response accompanied by the production of high levels of gamma interferon but did not show significant changes in interleukin-4 levels. This is suggestive of a Th1-like response (considered to be important in the maturation of cytotoxic T lymphocytes that are essential for the elimination of virus-infected cells). The data show that adenovirus vectors offer a promising alternative strategy for the development of dengue virus vaccines.  相似文献   

8.

Background

Human rhinoviruses (HRVs) are the predominant cause of common cold. In addition, HRVs are implicated in the worsening of COPD and asthma, as well as the loss of lung transplants. Despite significant efforts, no anti-viral agent is approved for the prevention or treatment of HRV-infection.

Results

In this study we demonstrate that Iota-Carrageenan, a sulphated polysaccharide derived from red seaweed, is a potent anti-rhinoviral substance in-vitro. Iota-Carrageenan reduces HRV growth and inhibits the virus induced cythopathic effect of infected HeLa cells. In addition, Iota-Carrageenan effectively prevents the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture. The data suggest that Iota-Carrageenan acts primarily by preventing the binding or the entry of virions into the cells.

Conclusion

Since HRV infections predominately occur in the nasal cavity and the upper respiratory tract, a targeted treatment with a product containing Iota-Carrageenan is conceivable. Clinical trials are needed to determine whether Iota-Carrageenan-based products are effective in the treatment or prophylaxis of HRV infections.  相似文献   

9.
Human CS1, also known as novel Ly9, 19A24, or CRACC, is a member of the immunoglobulin gene superfamily (IgSF) expressed on natural killer cells and other leukocytes. Here we describe the cloning of the mouse homologue of this gene. The mouse novel Ly9 gene is shown to encode a transmembrane protein composed of two extracellular immunoglobulin-like domains, a transmembrane region and an 88-amino acid cytoplasmic domain. Mouse novel Ly9 is structurally similar to the extracellular domains of CD84 and CD229 (Ly9). Both mouse and human novel Ly9 genes mapped close to the CD229gene in a region where other members of the CD150 family have also been mapped, and analysis of their genomic sequences showed that they have an identical intron/exon organization. Northern blot analysis revealed that the expression of mouse and human novel Ly9 was predominantly restricted to hematopoietic tissues, with the exception of testis. Here we show that SAP (SH2D1A), an adapter protein responsible for the X-linked lymphoproliferative disease, binds to the phosphorylated cytoplasmic tail of human but not mouse novel Ly9. Taken together, these data indicate that mouse novel Ly9 is a new member of the expanding CD150 family of cell surface receptors.  相似文献   

10.
A critical element in improving the potency of cancer vaccines, especially pure protein or peptide antigens, is to develop procedures that can strongly but safely increase their ability to induce immune responses. Here, we describe that encapsulation of a pure protein antigen and interleukin-2 (IL-2) together into liposomes significantly improves immune responses and tumor protection. Groups of C57Bl/6 mice were immunized weekly ×4 with –0.1 mg of ovalbumin (OVA) injected subcutaneously in PBS or encapsulated in liposomes with or without human recombinant IL-2. Control groups included mice immunized to irradiated E.G7-OVA cells (that express ovalbumin), or to PBS. Sera were collected and pooled by immunization group at baseline and at weeks 2 and 4 to measure antibody responses to OVA by ELISA. Splenocytes obtained at week 4 were tested for anti-OVA cellular responses by ELISPOT. Mice were then challenged to a lethal dose of E.G7-OVA cells to measure tumor-protective immunity. IL-2 liposomes caused no detectable toxicity. Antibody, CD8+ T cell, and tumor-protective immune responses were markedly enhanced in mice immunized to OVA + IL-2 in liposomes compared to mice immunized to OVA, either alone or encapsulated into liposomes without IL-2. These results indicate that IL-2 liposomes enhance antibody, cellular, and tumor-protective immune responses to immunization with a soluble protein. This may provide a simple, safe, and effective way to enhance the immunogenicity of vaccines that consist of pure protein antigens. Supported by grant CA096804 (DJ)  相似文献   

11.
The lymphocyte activation gene-3 (LAG-3) product is a MHC class II ligand that has been used in vivo to stimulate MHC class II+ APCs to increase tumor-specific immune responses. We investigated whether LAG-3 could also play an adjuvant role in vivo for the induction of humoral and CD4 or CD8 cell-mediated immune responses when immunizing mice with a particulate (hepatitis B surface Ag) or soluble (OVA) Ag. In both cases, coadministration of 1 microg of a soluble fusion protein between murine LAG-3 and the Fc fraction of a murine IgG2a mAb (mLAG-3Ig) as a vaccine adjuvant induced or increased CTL responses to the corresponding MHC class I-restricted peptide. In addition, splenocytes of mice vaccinated with either the particulate or soluble Ag plus mLAG-3Ig exhibited a significantly greater proliferative response than did splenocytes of mice immunized with Ag and a control Ig molecule. Similarly, these splenocytes had a greater Th1- but not Th2-type cytokine response. Finally, mice immunized with Ag plus mLAG-3Ig produced higher titers of Abs than mice immunized with Ag and a control Ig molecule. Thus, these data provide evidence of a novel means of improving the immunogenicity of subunit vaccines.  相似文献   

12.
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.  相似文献   

13.
A number of integral membrane proteins (Imps) isolated from Escherichia coli have been examined for their ability to generate serum antibody responses in the absence of adjuvant. These proteins were found to stimulate high titers of serum antibody when injected into rabbits or mice in saline. The antibody titers elicited were not significantly increased by the addition of a powerful adjuvant such as IFA. Covalent conjugation of BSA, of the DNP group, and of a peptide Ag from Plasmodium falciparum to these protein carriers resulted in a significant enhancement of the immune response to the conjugated material in comparison with the response elicited when the immunogen was injected without adjuvant or was not conjugated to Imps. The antibody response to these conjugates could not be significantly increased by the addition of IFA. Thus, the Imps of E. coli represent powerful carrier molecules which, when injected into mice and rabbits, are not only capable of generating high titers of antibody to themselves, but also to molecules conjugated to them. Immunization with immunogens coupled to these proteins results in the production of high titers of antibody without the need for oil-based adjuvants, thereby avoiding the unwanted side effects of such adjuvants.  相似文献   

14.
Plasmodium falciparum infection during pregnancy can lead to the transplacental passage of malarial Ags that are capable of inducing acquired immune responses in the fetus. Studies have identified cytokines produced by malaria-specific cord blood (CB) T cells, but information on fetal B cells is limited. Thus, CB mononuclear cells from 120 Cameroonian newborns were cultured for 7 days in vitro and supernatants were assessed by ELISA for Abs to an extract of malarial schizonts (MA), recombinant apical merozoite Ag 1 (AMA-1), the 42-kDa C-terminal region of merozoite surface protein 1 (MSP-1(42)), a B epitope of ring-infected erythrocyte surface Ag (RESA), and the dominant B epitope of the circumsporozoite protein (CSP). Only 12% of supernatants contained IgM to MA but 78% had IgG to one or more malarial Ags, with 53% having IgG to AMA-1, 38% to MSP-1(42), 3% to RESA, and 0% to CSP. The Abs to AMA-1 and MSP-1(42) were predominantly IgG1 and IgG3. CB mononuclear cells were also tested for the ability to secrete cytokines in response to MA and a pool of conserved MSP-1 T cell epitopes. Among the Ag-reactive samples, 39.3% produced only Th2-type cytokines, whereas 60.6% produced a combination of Th1- and Th2-type cytokines. Although a Th2 bias was observed, the in utero cytokine environment was adequate to support isotype switching to cytophilic IgGs, the isotypes that are protective in adults. Because many infants living in a low transmission area are born with malaria-specific B and T cells, the influence of in utero priming on neonatal immunity merits further investigation.  相似文献   

15.
The Cbl adapter proteins typically function to down-regulate activated protein tyrosine kinases and other signaling proteins by coupling them to the ubiquitination machinery for degradation by the proteasome. Cbl proteins bind to specific tyrosine-phosphorylated sequences in target proteins via the tyrosine kinase-binding (TKB) domain, which comprises a four-helix bundle, an EF-hand calcium-binding domain, and a non-conventional Src homology-2 domain. The previously derived consensus sequence for phosphotyrosine recognition by the Cbl TKB domain is NXpY(S/T)XXP (X denotes lesser residue preference), wherein specificity is conferred primarily by residues C-terminal to the phosphotyrosine. Cbl is recruited to and phosphorylated by the insulin receptor in adipose cells through the adapter protein APS. APS is phosphorylated by the insulin receptor on a C-terminal tyrosine residue, which then serves as a binding site for the Cbl TKB domain. Using x-ray crystallography, site-directed mutagenesis, and calorimetric studies, we have characterized the interaction between the Cbl TKB domain and the Cbl recruitment site in APS, which contains a sequence motif, RA(V/I)XNQpY(S/T), that is conserved in the related adapter proteins SH2-B and Lnk. These studies reveal a novel mode of phosphopeptide interaction with the Cbl TKB domain, in which N-terminal residues distal to the phosphotyrosine directly contact residues of the four-helix bundle of the TKB domain.  相似文献   

16.
Antibody responses to T-dependent and T-"independent" antigens were studied in disease-susceptible (BALB/c and C57BL/10) and disease-resistant (A/J) mice infected with Leishmania donovani chagasi. Disease-susceptible mice but not disease-resistant mice showed a transient decrease in PFC responses to TNP on a T-dependent carrier (BGG) during the period of 4-8 weeks after infection. Infected disease-susceptible animals also showed increased responses to TNP on a type II T-independent carrier (Ficoll), which persisted until at least 14 weeks after infection. The increased responses were associated with a significant increase in anti-TNP antibody of the IgG2b subclass. When T-enriched spleen cells from infected mice and B-enriched spleen cells from uninfected mice were transferred to irradiated recipients immunized with TNP-Ficoll, increased anti-TNP PFC were observed over numbers seen in irradiated recipients which received both B and T cells from uninfected mice. Increased responses to TNP-Ficoll were also induced by prior administration of soluble leishmania extract in CFA. Infected mice immunized with TNP-LPS, a T-independent type I antigen, also had increased anti-TNP antibody responses, but had normal anti-LPS antibody responses. The elevated antibody production which occurred in response to the T-"independent" antigens could not be attributed to the relatively low polyclonal response which occurred in both disease-resistant and disease-susceptible mice infected with L. donovani chagasi. The observations are consistent with leishmania induced, transient alterations in some T-cell functions including response to haptens on T-dependent carriers, and a lack of down regulation of T-"independent" responses. Subtle lesions in immunoregulation may be important correlates of successful protozoal infection and may be responsible for some of the immunologic manifestations of the disease.  相似文献   

17.
Numerous studies have demonstrated that targeting Ag to Fc receptors (FcR) on APCs can enhance humoral and cellular immunity. However, studies are lacking that examine both the use of FcR-targeting in generating immune protection against infectious agents and the use of FcRs in the induction of mucosal immunity. Francisella tularensis is a category A intracellular mucosal pathogen. Thus, intense efforts are underway to develop a vaccine against this organism. We hypothesized that protection against mucosal infection with F. tularensis would be significantly enhanced by targeting inactivated F. tularensis live vaccine strain (iFt) to FcRs at mucosal sites, via intranasal immunization with mAb-iFt complexes. These studies demonstrate for the first time that: 1) FcR-targeted immunogen enhances immunogen-specific IgA production and protection against subsequent infection in an IgA-dependent manner, 2) FcgammaR and neonatal FcR are crucial to this protection, and 3) inactivated F. tularensis, when targeted to FcRs, enhances protection against the highly virulent SchuS4 strain of F. tularensis, a category A biothreat agent. In summary, these studies show for the first time the use of FcRs as a highly effective vaccination strategy against a highly virulent mucosal intracellular pathogen.  相似文献   

18.
In processes regulated by quorum sensing (QS) bacteria respond to the concentration of autoinducers in the environment to engage in group behaviours. Autoinducer-2 (AI-2) is unique as it can foster interspecies communication. Currently, two AI-2 receptors are known, LuxP and LsrB, but bacteria lacking these receptors can also respond to AI-2. In this work, we present an efficient and reproducible synthesis of a novel chemical probe, d-desthiobiotin-AI-2. This probe binds both LuxP and LsrB receptors from different species of bacteria. Thus, this probe is able to bind receptors that recognise the two known biologically active forms of AI-2, presenting the plasticity essential for the identification of novel unknown AI-2 receptors. Moreover, a protocol to pull down receptors bound to d-desthiobiotin-AI-2 with anti-biotin antibodies has also been established. Altogether, this work highlights the potential of conjugating chemical signals to biotinylated derivatives to identify and tag signal receptors involved in quorum sensing or other chemical signalling processes.  相似文献   

19.
Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutant's reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号