首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA (dsRNA) fragments are readily internalized and processed by Drosophila S2 cells, making these cells a widely used tool for the analysis of gene function by gene silencing through RNA interference (RNAi). The underlying mechanisms are insufficiently understood. To identify components of the RNAi pathway in S2 cells, we developed a screen based on rescue from RNAi-induced lethality. We identified Argonaute 2, a core component of the RNAi machinery, and three gene products previously unknown to be involved in RNAi in Drosophila: DEAD-box RNA helicase Belle, 26 S proteasome regulatory subunit 8 (Pros45), and clathrin heavy chain, a component of the endocytic machinery. Blocking endocytosis in S2 cells impaired RNAi, suggesting that dsRNA fragments are internalized by receptor-mediated endocytosis. Indeed, using a candidate gene approach, we identified two Drosophila scavenger receptors, SR-CI and Eater, which together accounted for more than 90% of the dsRNA uptake into S2 cells. When expressed in mammalian cells, SR-CI was sufficient to mediate internalization of dsRNA fragments. Our data provide insight into the mechanism of dsRNA internalization by Drosophila cells. These results have implications for dsRNA delivery into mammalian cells.  相似文献   

2.
3.
4.
5.
The S13 subunit (also called Pad1, Rpn11, and MPR1) is a component of the 19S complex, a regulatory complex essential for the ubiquitin-dependent proteolytic activity of the 26S proteasome. To address the functional role of S13, we combined double-stranded RNA interference (RNAi) against the Drosophila proteasome subunit DmS13 with expression of wild-type and mutant forms of the homologous human gene, HS13. These studies show that DmS13 is essential for 26S function. Loss of the S13 subunit in metazoan cells leads to increased levels of ubiquitin conjugates, cell cycle defects, DNA overreplication, and apoptosis. In vivo assays using short-lived proteasome substrates confirmed that the 26S ubiquitin-dependent degradation pathway is compromised in S13-depleted cells. In complementation experiments using Drosophila cell lines expressing HS13, wild-type HS13 was found to fully rescue the knockdown phenotype after DmS13 RNAi treatment, while an HS13 containing mutations (H113A-H115A) in the proposed isopeptidase active site was unable to rescue. A mutation within the conserved MPN/JAMM domain (C120A) abolished the ability of HS13 to rescue the Drosophila cells from apoptosis or DNA overreplication. However, the C120A mutant was found to partially restore normal levels of ubiquitin conjugates. The S13 subunit may possess multiple functions, including a deubiquitinylating activity and distinct activities essential for cell cycle progression that require the conserved C120 residue.  相似文献   

6.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

7.
8.
9.
10.
The Imd signaling cascade, similar to the mammalian TNF-receptor pathway, controls antimicrobial peptide expression in Drosophila. We performed a large-scale RNAi screen to identify novel components of the Imd pathway in Drosophila S2 cells. In all, 6713 dsRNAs from an S2 cell-derived cDNA library were analyzed for their effect on Attacin promoter activity in response to Escherichia coli. We identified seven gene products required for the Attacin response in vitro, including two novel Imd pathway components: inhibitor of apoptosis 2 (Iap2) and transforming growth factor-activated kinase 1 (TAK1)-binding protein (TAB). Iap2 is required for antimicrobial peptide response also by the fat body in vivo. Both these factors function downstream of Imd. Neither TAB nor Iap2 is required for Relish cleavage, but may be involved in Relish nuclear localization in vitro, suggesting a novel mode of regulation of the Imd pathway. Our results show that an RNAi-based approach is suitable to identify genes in conserved signaling cascades.  相似文献   

11.
Neuronal circuit development and function require proper synapse formation and maintenance. Genetic screens are one powerful method to identify the mechanisms shaping synaptic development and stability. However, genes with essential roles in non-neural tissues may be missed in traditional loss-of-function screens. In an effort to circumvent this limitation, we used neuron-specific RNAi knock down in Drosophila and assayed the formation, growth, and maintenance of the neuromuscular junction (NMJ). We examined 1970 Drosophila genes, each of which has a conserved ortholog in mammalian genomes. Knock down of 158 genes in post-mitotic neurons led to abnormalities in the neuromuscular system, including misapposition of active zone components opposite postsynaptic glutamate receptors, synaptic terminal overgrowth and undergrowth, abnormal accumulation of synaptic material within the axon, and retraction of synaptic terminals from their postsynaptic targets. Bioinformatics analysis demonstrates that genes with overlapping annotated function are enriched within the hits for each phenotype, suggesting that the shared biological function is important for that aspect of synaptic development. For example, genes for proteasome subunits and mitotic spindle organizers are enriched among the genes whose knock down leads to defects in synaptic apposition and NMJ stability. Such genes play essential roles in all cells, however the use of tissue- and temporally-restricted RNAi indicates that the proteasome and mitotic spindle organizers participate in discrete aspects of synaptic development. In addition to identifying functional classes of genes shaping synaptic development, this screen also identifies candidate genes whose role at the synapse can be validated by traditional loss-of-function analysis. We present one such example, the dynein-interacting protein NudE, and demonstrate that it is required for proper axonal transport and synaptic maintenance. Thus, this screen has identified both functional classes of genes as well as individual candidate genes that are critical for synaptic development and will be a useful resource for subsequent mechanistic analysis of synapse formation and maintenance.  相似文献   

12.
13.
14.
15.
《Gene》1998,206(2):165-174
The DUG gene of Drosophila encodes a putative ATPase that is a structural and functional homolog of the yeast SUG1 product. When introduced into S. cerevisiae, the Drosophila DUG gene rescued the lethality associated with a SUG1 mutant. Anti-DUG antibodies recognized a protein that migrated in high molecular weight complexes, along with components of the 26S proteasome, and also immunoprecipitated components of the 26S proteasome from embryonic extracts. Proteins recognized by the affinity-purified antibody raised against DUG were localized in either a punctate cytoplasmic distribution or in the nucleus, depending on the cell type, consistent with the subcellular localization of the 26S proteasome in various cell types.  相似文献   

16.
17.
Using the Drosophila melanogaster S2 cell line, stably expressing a cloned muscarinic acetylcholine receptor (AChR), DM1, we have applied gene silencing by double-stranded RNA interference (RNAi) to knock down gene products involved in DM1-mediated calcium signalling. We have shown that RNAi knock down of either the inositol 1,4,5-trisphosphate receptor (Ins(1,4,5)P(3)R), or the SERCA calcium pump in the S2-DM1 cells blocks the increase in intracellular calcium concentration ([Ca(2+)](i)) resulting from activation of the DM1 receptor by 100 microM carbamylcholine (CCh). When RNAi designed to knock down the ryanodine receptor (RyR) was tested, there was no change in the calcium increase detected in response to CCh, consistent with a failure to detect RyRs in S2-DM1 cells using RT-PCR. A combination of RNAi and calcium imaging has provided a direct demonstration of key roles for the Ins(1,4,5)P(3)R and the SERCA pump in the response to DM1 receptor activation.Thus, we show that silencing of individual genes by RNAi in a well characterised Drosophila S2 cell line offers experimental opportunities for cell-signalling studies. Future investigations with RNAi libraries taking full advantage of the wealth of new information available from sequencing the Drosophila genome, may help identify novel components of cell-signalling pathways and functionally linked gene products.  相似文献   

18.
Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, we performed integrated analyses of genome-wide copy number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy number loss of that gene. These CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes are enriched for spliceosome, proteasome, and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in?a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability.  相似文献   

19.
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号