首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans remains the main etiological agent of candidiasis, which currently represents the fourth most common nosocomial bloodstream infection in US hospitals1. These opportunistic infections pose a growing threat for an increasing number of compromised individuals, and carry unacceptably high mortality rates. This is in part due to the limited arsenal of antifungal drugs, but also to the emergence of resistance against the most commonly used antifungal agents. Further complicating treatment is the fact that a majority of manifestations of candidiasis are associated with the formation of biofilms, and cells within these biofilms show increased levels of resistance to most clinically-used antifungal agents2. Here we describe the development of a high-density microarray that consists of C. albicans nano-biofilms, which we have named CaBChip3. Briefly, a robotic microarrayer is used to print yeast cells of C. albicans onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional matrix using a volume as low as 50 nL and immobilized on a glass substrate with a suitable coating. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully developed "nano-biofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, three dimensional architecture and drug resistance)4. Overall, the CaBChip is composed of ~750 equivalent and spatially distinct biofilms; with the additional advantage that multiple chips can be printed and processed simultaneously. Cell viability is estimated by measuring the fluorescent intensity of FUN1 metabolic stain using a microarray scanner. This fungal chip is ideally suited for use in true high-throughput screening for antifungal drug discovery. Compared to current standards (i.e. the 96-well microtiter plate model of biofilm formation5), the main advantages of the fungal biofilm chip are automation, miniaturization, savings in amount and cost of reagents and analyses time, as well as the elimination of labor intensive steps. We believe that such chip will significantly speed up the antifungal drug discovery process.  相似文献   

2.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. Cells in biofilms display phenotypic traits that are dramatically different from their free-floating planktonic counterparts, such as increased resistance to anti-microbial agents and protection form host defenses. Here, we describe the characteristics of C. albicans biofilm development using a 96 well microtitre plate model, microscopic observations and a colorimetric method based on the use of a modified tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide, XTT) to monitor metabolic activities of cells within the biofilm. C. albicans biofilm formation was characterized by initial adherence of yeast cells (0-2 h), followed by germination and micro-colony formation (2-4 h), filamentation (4-6 h), monolayer development (6-8 h), proliferation (8-24 h) and maturation (24-48 h). The XTT-reduction assay showed a linear relationship between cellular density of the biofilm and metabolic activity. Serum and saliva pre-conditioning films increased the initial attachment of C. albicans, but had minimal effect on subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to visualize C. albicans biofilms. Mature C. albicans biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. albicans biofilms displayed a complex three dimensional structure which demonstrated spatial heterogeneity and a typical architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. albicans cells against clinically used fluconazole and amphotericin B as compared to their planktonic counterparts.  相似文献   

3.
Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.  相似文献   

4.
Candida albicans is an opportunistic human pathogen with the ability to differentiate and grow in filamentous forms and exist as biofilms. The biofilms are a barrier to treatment as they are often resistant to the antifungal drugs. In this study, we investigated the antifungal activity of allicin, an active compound of garlic on various isolates of C. albicans. The effect of allicin on biofilm production in C. albicans as compared to fluconazole, an antifungal drug, was investigated using the tetrazolium (XTT) reduction-dependent growth and crystal violet assays as well as scanning electron microscopy (SEM). Allicin-treated cells exhibited significant reduction in biofilm growth (p<0.05) compared to fluconazole-treated and also growth control cells. Moreover, observation by SEM of allicin and fluconazole-treated cells confirmed a dose-dependent membrane disruption and decreased production of organisms. Finally, the expression of selected genes involved in biofilm formation such as HWP1 was evaluated by semi-quantitative RT-PCR and relative real time RT-PCR. Allicin was shown to down-regulate the expression of HWP1.  相似文献   

5.
The incidence of fungal infections has increased significantly over the past decades. Very often these infections are associated with biofilm formation on implanted biomaterials and/or host surfaces. This has important clinical implications, as fungal biofilms display properties that are dramatically different from planktonic (free-living) populations, including increased resistance to antifungal agents. Here we describe a rapid and highly reproducible 96-well microtiter-based method for the formation of fungal biofilms, which is easily adaptable for antifungal susceptibility testing. This model is based on the ability of metabolically active sessile cells to reduce a tetrazolium salt (2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide) to water-soluble orange formazan compounds, the intensity of which can then be determined using a microtiter-plate reader. The entire procedure takes approximately 2 d to complete. This technique simplifies biofilm formation and quantification, making it more reliable and comparable among different laboratories, a necessary step toward the standardization of antifungal susceptibility testing of biofilms.  相似文献   

6.
Candida albicans biofilm development, modeling a host-pathogen interaction   总被引:1,自引:0,他引:1  
Medical device-associated infections involve the attachment of cells to a surface, production of an extracellular matrix and development of a mature biofilm. Many Candida albicans disease states involve biofilm growth. These infections have great impact on public health because organisms in biofilms exhibit dramatically reduced susceptibility to antifungal therapy. Progression to a mature biofilm is dependent on cell adhesion, extracellular matrix production and the yeast-to-hyphae transition. Numerous in vitro biofilm model systems have been successfully used to examine biofilm architecture, development, cell phenotypes and drug resistance. Although these studies have included a number of experimental variables to mimic infections in patients, it is difficult to accurately account for the multitude of host and infection-site variables that are probably important in humans. Recent studies have begun to explore C. albicans biofilms using animal biofilm infection models in order to more completely reflect the complexity of this host-fungal interaction.  相似文献   

7.
Aims:  The antifungal activity of ( R )-goniothalamin ( 1 ) and ( S )-goniothalamin ( ent - 1 ) was evaluated against six Candida species. The in vitro effect of these compounds on yeast adhesion to human buccal epithelial cells (BEC) and Candida albicans and C. dubliniensis biofilms progression were also investigated.
Methods and Results:  Yeast susceptibility was evaluated by broth microdilution assay and showed that ent - 1 exhibited higher potency against all fungal clinical isolated when compared to compound 1 . Compounds 1 and ent - 1 were as potent as fluconazole in inhibiting the adhesion of C. albicans and C. dubliniensis to BEC. XTT-reducing assay and scanning electron microscopy revealed that 1 and ent - 1 were twice as potent as fluconazole in the inhibition of yeast biofilms progression.
Conclusions:  Our findings indicate that compounds 1 and ent - 1 are potent anticandidal agents.
Significance and Impact of the Study:  This study highlights goniothalamin enantiomers as promising lead compounds for the design of new antifungal with inhibitory activity on yeast adhesion and biofilm progression.  相似文献   

8.
Biofilms are differentiated masses of microbes that form on surfaces and are surrounded by an extracellular matrix. Fungal biofilms, especially those of the pathogen Candida albicans, are a cause of infections associated with medical devices. Such infections are particularly serious because biofilm cells are relatively resistant to many common antifungal agents. Several in vitro models have been used to elucidate the developmental stages and processes required for C. albicans biofilm formation, and recent studies have begun to define biofilm genetic control. It is clear that cell-substrate and cell-cell interactions, hyphal differentiation and extracellular matrix production are key steps in biofilm development. Drug resistance is acquired early in biofilm formation, and appears to be governed by different mechanisms in early and late biofilms. Quorum sensing might be an important factor in dispersal of biofilm cells. The past two years have seen the emergence of several genomic strategies to uncover global events in biofilm formation and directed studies to understand more specific events, such as hyphal formation, in the biofilm setting.  相似文献   

9.
Candida albicans is a leading cause of biofilm-related infections. As Candida biofilms are recalcitrant to host defenses, we sought to determine the effects of interferon-γ and granulocyte colony-stimulating factor, two pro-inflammatory cytokines, on the antifungal activities of human polymorphonuclear neutrophils (PMNs) against C. albicans biofilms, using an in vitro biofilm model. Priming of PMNs by these cytokines augmented fungal damage of planktonic cells; however, priming of PMNs did not have the same effect against Candida biofilms. Biofilm phenotype appears to play an important role in protecting C. albicans from the innate immune system.  相似文献   

10.
Candida biofilms   总被引:5,自引:0,他引:5  
In response to attachment to a surface, fungal cells produce biofilms, three-dimensional structures composed of cells surrounded by exopolymeric matrices. Surface attachment causes Candida albicans cells to enter a special physiological state in which they are highly resistant to antifungal drugs and express the drug efflux determinants CDR1, CDR2 and MDR1. C. albicans biofilms produced under different conditions differ in their cellular morphology and matrix content, which suggests that biofilms formed within a host, for example on indwelling medical devices, would also differ depending on the nature of the device and its location. The mechanisms by which surface attachment leads to biofilm formation are presently not understood.  相似文献   

11.
Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.  相似文献   

12.
Invasive infections caused by Candida spp. are increasing worldwide and are becoming an important cause of morbidity and mortality in immunocompromised patients. A large number of manifestations of candidiasis are associated with the formation of biofilms on inert or biological surfaces. Candida spp. biofilms are recalcitrant to treatment with conventional antifungal therapies. The aim of this study was dual 1) to determine the prevalence of biofilm producers among clinical isolates from catheter (16 C. albicans ) and blood culture (2 C. albicans and 30 C. tropicalis), and 2) to determine the activity of amphotericin B and anidulafungin against C. albicans and C. tropicalis biofilms of 24 and 48 hours of maturation. Biofilms were developed using a 96-well microtitre plate model and production and activity of antifungal agents against biofilms were determined by the tetrazolium (XTT) reduction assay. Of catheter and blood isolates, 62.5 and 56.25%, respectively, produced biofilms. By species, 68.42% of C. albicans and 53.33% of C. tropicalis were biofilm producers. C. albicans biofilms showed more resistance to amphotericin B and anidulafungin than their planktonic counterparts. Complete killing of biofilms was never achieved, even at the highest concentrations of the drugs tested. Anidulafungin displayed more activity than amphotericin B against C. albicans biofilms of 24 hours of maturation (GM MIC 0.354 vs. 0.686 microg/ml), but against C. tropicalis biofilms amphotericin B was more active (GM MIC 11.285 vs. 0.476 microg/ml). In contrast, against biofilms with 48 hours maturation, amphotericin B was more active against both species.  相似文献   

13.
A variety of manifestations of Candida albicans infections are associated with the formation of biofilms on the surface of biomaterials. In order to maintain their niche these adherent populations need to withstand the continuous bathing action of physiological fluids (saliva, blood), which also provide water and nutrients to the fungal cells. Thus, it was the aim of this study to examine and further characterize the development of C. albicans biofilms under shear forces and a flow of replenishing nutrients, emulating the conditions that fungal cells would normally encounter within the host. An improved modified Robbins device (MRD) was designed to hold six poly methyl methacrylate (PMMA) plugs of 25 mm in diameter. A "seed and feed" model of biofilm formation was then implemented for which the apparatus was initially seeded with a C. albicans cell suspension to allow initial adhesion of fungal cells to the biomaterial. Following this initial step, sterile medium was then pumped through the MRD at a constant flow rate. Scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM) demonstrated a high degree of heterogeneity associated with the structure of biofilms formed under flowing conditions using the MRD. In addition, these biofilms displayed a complex three dimensional architecture and increased production of exopolymeric material.  相似文献   

14.
15.
Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 micro M) and incubated at 37 degrees C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 micro M farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent.  相似文献   

16.
Many Candida infections involve biofilm formation on implanted devices such as an indwelling catheter, a prosthetic heart valve or a denture. Candida biofilms can be formed in vitro using several model systems. In the simplest of these, organisms are grown on the surfaces of small discs of catheter material or denture acrylic. Biofilms of C. albicans prepared in this way consist of matrix-enclosed microcolonies containing yeasts, hyphae and pseudohyphae, arranged in a bilayer structure. Candida biofilms are resistant to a range of antifungal agents in current clinical use, including amphotericin B and fluconazole. Current research suggests that multiple mechanisms are involved in biofilm drug resistance.  相似文献   

17.
18.
Many Candida spp. produce surface-adherent biofilm populations that are resistant to antifungal compounds and other environmental stresses. Recently, certain chelating agents have been recognized as having strong antimicrobial activity against biofilms of Candida species. This study investigated and characterized the concentration- and time-dependent killing of Candida biofilms by the chelators tetrasodium EDTA and sodium diethyldithiocarbamate. Here, Candida albicans and Candida tropicalis biofilms were cultivated in the Calgary Biofilm Device and then exposed to gradient arrays of these agents. Population survival was evaluated by viable cell counting and by confocal laser scanning microscopy (CLSM) in conjunction with fluorescent viability staining. At concentrations of > or =2 mM, both EDTA and diethyldithiocarbamate killed c. 90-99.5% of the biofilm cell populations. Notably, a small fraction (c. 0.5-10%) of biofilm cells were able to withstand the highest concentrations of these antifungals that were tested (16 and 32 mM for EDTA and diethyldithiocarbamate, respectively). Interestingly, CLSM revealed that these surviving cells were irregularly distributed throughout the biofilm community. These data suggest that the use of chelating agents against biofilms of Candida spp. may be limited by the refractory nature of a variant cell subpopulation in the surface-adherent community.  相似文献   

19.
AIMS: To study the interactions between Candida albicans and 12 other species of Candida and bacteria in biofilms. METHODS AND RESULTS: The number of cells within growing biofilms in a polystyrene tube model was measured after adding C. albicans to preformed biofilms of other micro-organisms and vice versa. It was also measured after simultaneous biofilm formation of C. albicans and other micro-organisms. The number of cells of C. albicans within the growing biofilms decreased significantly (P < 0.05) when the fungus was added to preformed biofilms of Candida spp. and bacteria except, with C. parapsilosis, Torulopsis glabrata and the glycocalyx producer Pseudomonas aeruginosa. When C. parapsilosis, Staphylococcus epidermidis (nonglycocalyx producer) or Serratia marcescens was added to preformed biofilms of C. albicans, the number of cells of these micro-organisms increased in the growing biofilms. CONCLUSIONS: Biofilms of C. albicans are capable of holding other micro-organisms and more likely to be heterogeneous with other bacteria and fungi in the environment and on medical devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Recognition of the heterogeneity of biofilm-associated organisms can influence treatment decisions, particularly in patients who do not respond to initial appropriate therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号