首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Comparative sequence analysis is a powerful means with which to identify functionally relevant non-coding DNA elements through conserved nucleotide sequence. The macrosatellite DXZ4 is a polymorphic, uninterrupted, tandem array of 3-kb repeat units located exclusively on the human X chromosome. While not obviously protein coding, its chromatin organization suggests differing roles for the array on the active and inactive X chromosomes.  相似文献   

2.
Almost half of the human genome consists of repetitive DNA. Understanding what role these elements have in setting up chromatin states that underlie gene and chromosome function in complex genomes is paramount. The function of some types of repetitive DNA is obvious by virtue of their location, such as the alphoid arrays that define active centromeres. However, there are many other types of repetitive DNA whose evolutionary origins and current roles in genome biology remain unknown. One type of repetitive DNA that falls into this class is the macrosatellites. The relevance of these sequences to disease is clearly demonstrated by the 4q macrosatellite (D4Z4), whereupon contraction in the size of the array is associated with the onset of facioscapulohumeral muscular dystrophy. Here, I describe recent findings relating to the chromatin organization of D4Z4 and that of the X-linked macrosatellite DXZ4, highlighting the fact that these enigmatic sequences share more than a similar name.  相似文献   

3.
4.
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.  相似文献   

5.
Genome sequencing of the protistan parasite Entamoeba histolytica HM-1:IMSS revealed that almost all the tRNA genes are organized into tandem arrays that make up over 10% of the genome. The 25 distinct array units contain up to 5 tRNA genes each and some also encode the 5S RNA. Between adjacent genes in array units are complex short tandem repeats (STRs) resembling microsatellites. To investigate the origins and evolution of this unique gene organization, we have undertaken a genome survey to determine the array unit organization in 4 other species of Entamoeba-Entamoeba dispar, Entamoeba moshkovskii, Entamoeba terrapinae, and Entamoeba invadens-and have explored the STR structure in other isolates of E. histolytica. The genome surveys revealed that E. dispar has the same array unit organization as E. histolytica, including the presence and numerical variation of STRs between adjacent genes. However, the individual repeat sequences are completely different to those in E. histolytica. All other species of Entamoeba studied also have tandem arrays of clustered tRNA genes, but the gene composition of the array units often differs from that in E. histolytica/E. dispar. None of the other species' arrays exhibit the complex STRs between adjacent genes although simple tandem duplications are occasionally seen. The degree of similarity in organization reflects the phylogenetic relationships among the species studied. Within individual isolates of E. histolytica most copies of the array unit are uniform in sequence with only minor variation in the number and organization of the STRs. Between isolates, however, substantial differences in STR number and organization can exist although the individual repeat sequences tend to be conserved. The origin of this unique gene organization in the genus Entamoeba clearly predates the common ancestor of the species investigated to date and their function remains unclear.  相似文献   

6.
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) has an unusual pathogenic mechanism. FSHD is caused by deletion of a subset of D4Z4 macrosatellite repeat units in the subtelomere of chromosome 4q. Recent studies provide compelling evidence that a retrotransposed gene in the D4Z4 repeat, DUX4, is expressed in the human germline and then epigenetically silenced in somatic tissues. In FSHD, the combination of inefficient chromatin silencing of the D4Z4 repeat and polymorphisms on the FSHD-permissive alleles that stabilize the DUX4 mRNAs emanating from the repeat result in inappropriate DUX4 protein expression in muscle cells. FSHD is thereby the first example of a human disease caused by the inefficient repression of a retrogene in a macrosatellite repeat array.  相似文献   

7.
Hypermutable minisatellites,a human affair?   总被引:6,自引:0,他引:6  
Bois PR 《Genomics》2003,81(4):349-355
Minisatellites are a class of highly polymorphic GC-rich tandem repeats. They include some of the most variable loci in the human genome, with mutation rates ranging from 0.5% to >20% per generation. Structurally, they consist of 10- to 100-bp intermingled variant repeats, making them ideal tools for dissecting mechanisms of instability at tandem repeats. Distinct mutation processes generate rare intra-allelic somatic events and frequent complex conversion-like germline mutations in these repeats. Furthermore, turnover of repeats at human minisatellites is controlled by intense recombinational activity in DNA flanking the repeat array. Surprisingly, whereas other mammalian genomes possess minisatellite-like sequences, hypermutable loci have not been identified that suggest human-specific turnover processes at minisatellite arrays. Attempts to transfer minisatellite germline instability to the mouse have failed. However, yeast models are now revealing valuable information regarding the mechanisms regulating instability at these tandem repeats. Finally, minisatellites and tandem repeats provide exquisitely sensitive molecular tools to detect genomic insults such as ionizing radiation exposure. Surprisingly, by a mechanism that remains elusive, there are transgenerational increases in minisatellite instability.  相似文献   

8.
9.
Li J  Wang X  Leung FC 《Gene》2007,387(1-2):118-125
We report here the molecular characterization of the basic repeating unit of a novel repetitive family, partially inverted repeat (PIR), previously identified from chicken genome. This repetitive DNA family shares a close evolutionary relationship with XhoI/EcoRI repeats and chicken nuclear-membrane-associated (CNM) repeat. Sequence analyses reveal the 1430 bp basic repeating unit can be divided into two regions: the central region ( approximately 1000 bp) and the flanking region ( approximately 430 bp). Within the central region, a pair of repeats (86 bp) flanks the central core ( approximately 828 bp) in inversed orientation. Due to the tandem array feature shared by the repeating units, the inverted repeats fall between the central core and flanking region. Southern blot analyses further reveal the intragenomic polymorphism of PIR, and the molecular size of repeating units ranges from 1.1 kb to 1.6 kb. The identified monomer variants may result from multiple crossing-over events, implying the potential roles of inverted repeats in satellite DNAs variation.  相似文献   

10.
Mouse mo-2 macrosatellites consisting of 31-bp tandem repeat units are mainly located at two loci in the C57BL/6 genome, one being at the centromere-distal telomeric region of chromosome 9 and the other at the pseudoautosomal (PA) region of chromosomes X and Y. The two clustes constitute approximately 300 kb and 150 kb, respectively. Southern analysis of a methylation-sensitive enzyme, HpaII-digested DNA showed that the mo-2 macrosatellites are detected as more than 30 polymorphic bands. Comparison of those bands between reciprocally crossed F1 mice revealed that approximately 20% of the allele-specific fragments exhibit different band intensities depending on the sex of the parent of origin. The differential methylation is observed in the mo-2 macrosatellite on the PA region but not in that on chromosome 9. Several fragments including the 3.4-kb fragment without internal HpaII site are more clearly detected when paternally derived, suggesting that the male-derived macrosatellite is undermethylated. Interestingly the difference is much more remarkable in inter-subspecific F1 mice between C57BL/6 and MSM than F1 between C57BL/6 and C3H/He. This suggests the presence of a modifier(s) that affect(s) the methylation of mo-2 in the MSM genome.  相似文献   

11.
The human cystatin B gene contains a variable number of 12-bp tandem repeats in its promoter region, of which the common alleles contain two or three copies and unusual expansion causes progressive myoclonus epilepsy of the Unverricht-Lundborg type. We undertook a comprehensive analysis of the genomic sequence to address the evolutionary events of this variable repeat. By examination of a contiguous genome sequence spanning 5.0 kb and linkage analysis of detected polymorphic changes, we identified six major intragenic haplotypes in unrelated Japanese subjects. The number of normal repeats was closely correlated with these alleles, indicating that changes in the array should be comparatively rare events during human evolution. To examine the origin of the repeat array further, we also analyzed five primate genomes. Repetitive polymorphism was unlikely in hominoids, and the array originated with the dodecamer itself in the course of primate evolution. The variability conceivably developed after the separation to humans.  相似文献   

12.
M M Mahtani  H F Willard 《Genomics》1990,7(4):607-613
Using pulsed-field gel analysis (PFGE), we have characterized the large array of alpha-satellite DNA located in the centromeric region of the human X chromosome. The tandem repetitive nature of this DNA family lends itself to examination by PFGE using restriction enzymes that cleave frequently in unique sequence DNA but which cut only rarely within the repetitive alpha-satellite array. Several such restriction enzymes (BglI, BglII, KpnI, ScaI) have proven highly informative in sizing the alpha-satellite array and in following the segregation of individual X-chromosome centromeres using PFGE polymorphisms. Among 29 different X chromosomes, alpha-satellite array length varied between 1380 and 3730 kb (mean = 2895 kb; SD = 537). In three large CEPH families comprising 24 meioses, inheritance of these PFGE polymorphisms was strictly Mendelian, with no indication of intraarray recombination. Such DXZ1 alpha-satellite polymorphisms, therefore, may prove useful in the study of pericentromeric X-linked disorders.  相似文献   

13.
Strain variation in the katG region of Mycobacterium tuberculosis   总被引:6,自引:0,他引:6  
Southern blot analysis of chromosomal DNA from clinical isolates of Mycobacterium tuberculosis using cosmid DNA probes revealed extensive strain variation in the katG region of the genome. In addition to deletion of the katG gene itself in some isoniazid-resistant strains, adjacent DNA fragments were missing or altered in a range of drug-sensitive and drug-resistant isolates. A species-specific 2 kb Kpnl fragment located 10 kb upstream of katG in M. tuberculosis H37Rv hybridized to fragments of differing size in different clinical isolates and was characterized in detail. Sequence analysis of this fragment showed that it comprised three tandem copies of a novel 75 bp repeat element flanked by multiple copies of the previously described 10 bp major polymorphic tandem repeat of M. tuberculosis (MPTR). The copy number of the 75 bp repeat was found to vary between strains, allowing application of a poly-merase chain reaction amplification strategy for strain differentiation. These results indicate that the katG region of the M. tuberculosis genome is highly variable and unstable. The presence of repetitive sequences may contribute to instability in this region of the genome.  相似文献   

14.
15.
Large tandem repeat sequences have been poorly investigated as severe technical limitations and their frequent absence from the genome reference hinder their analysis. Extensive allelotyping of this class of variation has not been possible until now and their mutational dynamics are still poorly known. In order to estimate the mutation rate of a macrosatellite, we analysed in detail the RNU2 locus, which displays at least 50 different alleles containing 5-82 copies of a 6.1 kb repeat unit. Mining data from the 1000 Genomes Project allowed us to precisely estimate copy numbers of the RNU2 repeat unit using read depth of coverage. This further revealed significantly different mean values in various recent modern human populations, favoring a scenario of fast evolution of this locus. Its proximity to a disease gene with numerous founder mutations, BRCA1, within the same linkage disequilibrium block, offered the unique opportunity to trace RNU2 arrays over a large timescale. Analysis of the transmission of RNU2 arrays associated with one ‘private’ mutation in an extended kindred and four founder mutations in multiple kindreds gave an estimation by maximum likelihood of 5 × 10−3 mutations per generation, which is close to that of microsatellites.  相似文献   

16.
Amplification of monomer sequences into long contiguous arrays is the main feature distinguishing satellite DNA from other tandem repeats, yet it is also the main obstacle in its investigation because these arrays are in principle difficult to assemble. Here we explore an alternative, assembly‐free approach that utilizes ultra‐long Oxford Nanopore reads to infer the length distribution of satellite repeat arrays, their association with other repeats and the prevailing sequence periodicities. Using the satellite DNA‐rich legume plant Lathyrus sativus as a model, we demonstrated this approach by analyzing 11 major satellite repeats using a set of nanopore reads ranging from 30 to over 200 kb in length and representing 0.73× genome coverage. We found surprising differences between the analyzed repeats because only two of them were predominantly organized in long arrays typical for satellite DNA. The remaining nine satellites were found to be derived from short tandem arrays located within LTR‐retrotransposons that occasionally expanded in length. While the corresponding LTR‐retrotransposons were dispersed across the genome, this array expansion occurred mainly in the primary constrictions of the L. sativus chromosomes, which suggests that these genome regions are favourable for satellite DNA accumulation.  相似文献   

17.
T.A. Kursar   《Gene》1988,70(2):263-270
The genomic structure and sequence variation of a 3.3-kb repeat DNA element, representing 5% of the genome of the kangaroo rat Dipodomys ordii, has been investigated. Most of the repeats are arranged in tandem arrays of 50 kb or more. Thirteen randomly selected genomic clones have been mapped with twelve restriction enzymes. The frequency of sequence divergence in the genomic clones is 0.5%. The clone maps and the genomic structure studies have permitted the characterization of a number of variant members of the 3.3-kb repeat family. The genomic organization of the repeat resembles that for repeated DNAs found in large tandem arrays or satellites.  相似文献   

18.
19.
Tandem repeats are common in eukaryotic genomes, but due to difficulties in assaying them remain poorly studied. Here, we demonstrate the utility of Nanostring technology as a targeted approach to perform accurate measurement of tandem repeats even at extremely high copy number, and apply this technology to genotype 165 HapMap samples from three different populations and five species of non-human primates. We observed extreme variability in copy number of tandemly repeated genes, with many loci showing 5–10 fold variation in copy number among humans. Many of these loci show hallmarks of genome assembly errors, and the true copy number of many large tandem repeats is significantly under-represented even in the high quality ‘finished’ human reference assembly. Importantly, we demonstrate that most large tandem repeat variations are not tagged by nearby SNPs, and are therefore essentially invisible to SNP-based GWAS approaches. Using association analysis we identify many cis correlations of large tandem repeat variants with nearby gene expression and DNA methylation levels, indicating that variations of tandem repeat length are associated with functional effects on the local genomic environment. This includes an example where expansion of a macrosatellite repeat is associated with increased DNA methylation and suppression of nearby gene expression, suggesting a mechanism termed “repeat induced gene silencing”, which has previously been observed only in transgenic organisms. We also observed multiple signatures consistent with altered selective pressures at tandemly repeated loci, suggesting important biological functions. Our studies show that tandemly repeated loci represent a highly variable fraction of the genome that have been systematically ignored by most previous studies, copy number variation of which can exert functionally significant effects. We suggest that future studies of tandem repeat loci will lead to many novel insights into their role in modulating both genomic and phenotypic diversity.  相似文献   

20.
The lengths of simple repeat sequences are generally unstable or polymorphic (highly variable with respect to the numbers of tandem repeats). Previously we have isolated a family of minisatellite DNA (GenBank accession AF422186) that appears specifically and abundantly in the genome of yellow fin sea bream Acanthopagrus latus but not in closely-related red sea bream Pagrus major, and found that the numbers of tandem arrays in the homologous loci are polymorphic. This means that the minisatellite sequence has appeared and propagated in A. latus genome after speciation. In order to understand what makes the minisatellite widespread within the A. latus genome and what causes the polymorphic nature of the number of tandem repeats, the structural features of single-stranded polynucleotides were analyzed by electrophoresis, chemical modification, circular dichroism (CD), differential scanning calorimetry (DSC) and electron microscopy. The results suggest that a portion of the repeat unit forms a stable minihairpin structure, and it can cause polymerase pausing within the minisatellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号