首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
发酵碳源对铜绿假单胞菌NY3(Pseudomonas aeruginosa NY3)产鼠李糖脂(Rhamnolipids,Rha)的特性影响较大。研究了利用废弃动物油作为发酵碳源时,其碱预水解和酶预水解对NY3菌发酵产鼠李糖脂产量、产物结构和性能的影响,从碳源水解酸值与水解产物、鼠李糖脂组分结构和实际应用效果进行了研究。碱、酶预水解实验发现,碳源酸值由初始的19.81 mg/g分别提高到72.04 mg/g和73.75 mg/g,气质联用(GC-MS)分析检测结果表明,碱、酶预水解后,碳源均释放7种C14-C18碳链的脂肪酸,鼠李糖脂产量由未预水解的8.28 g/L分别提高到15.35 g/L和17.63 g/L。液质联用(LCMS-IT-TOF)分析结果表明,用未预水解及碱、酶预水解碳源发酵时,NY3菌所产鼠李糖脂中单糖脂含量分别为62.07%、65.67%、87.32%。利用NY3菌在中试条件下处理高浓度石化企业油污泥,发现鼠李糖脂能促进NY3菌去除油污泥中的石油烃,且促进作用强弱顺序为未预水解产Rha碱预水解产Rha酶预水解产Rha。  相似文献   

2.
鼠李糖脂是一种性能优良的生物表面活性剂,在生物医药、环境保护、二次采油等方面具有很高的应用潜力.采用响应面分析法,对铜绿假单胞杆菌O-2-2的培养基进行了优化.Plackett-Burman(PB)实验设计表明,磷酸盐、硝酸盐和微量元素对鼠李糖脂的产量具有显著影响.Box-Behnke (BB)优化确定最佳培养基组成为磷酸盐、硝酸盐和微量元素用量分别为3.2g/L、13.76g/L和5.17ml,理论的最大产量为8.48g/L,与实测糖脂产量8.85g/L接近.摇瓶优化后的鼠李糖脂产量较优化前的6.24g/L提高了30.8%.最优化条件下采用10%的接种量逐级放大,并通过补料发酵,最终200L罐的鼠李糖脂产量达到70g/L,发酵时间仅为110h.采用新发明的二次蒸馏工艺,鼠李糖脂纯度达86.6%.液质联用(LC-MS)分析表明所生产的鼠李糖脂成分及含量为:双糖单脂32.9%、双糖双脂17.02%、单糖单脂3.16%、单糖双脂33.54%.  相似文献   

3.
从多种来源筛选高产鼠李糖脂的菌株,并研究菌种发酵特性和鼠李糖脂产物的理化性质。采用CTAB平板初步筛选鼠李糖脂合成菌株,通过分析菌株的16S r RNA基因序列确定细菌种属,采用薄层色谱、红外光谱分析产物性质。结果显示,利用CTAB平板初筛获得163株阳性菌株,初步发酵确定10株高产细菌鼠李糖脂的产量为12.2-17.7 g/L,10株细菌均鉴定为铜绿假单胞菌。挑选产量最高的菌株B12,分别以甘油、菜籽油、花生饼粉或葵花籽饼粉为碳源进行发酵,发现菜籽油为合成鼠李糖脂的最佳碳源。进一步对比在35℃、37℃和40℃的发酵水平,发现37℃条件下鼠李糖脂产量最高,为26.8 g/L。最后,对鼠李糖脂发酵产物进行了初步纯化,并进行了薄层色谱和红外光谱分析。菌株B12能够合成较高水平的鼠李糖脂,可能成为工业生产的候选菌株。  相似文献   

4.
为研究发酵碳源对铜绿假单胞菌NY3所产鼠李糖脂结构及性能的影响,从鼠李糖脂的结构组分、性能和应用效果等方面展开研究。薄层实验证明两种鼠李糖脂均含有单糖脂和双糖脂。液质分析发现以橄榄油作碳源时,鼠李糖脂中双糖脂(Rha-Rha-C5-C6:1和Rha-Rha-C8-C8:2)比例更大,约为73.09%。而地沟油作碳源时,单糖脂(Rha-C10-C10和Rha-C16-C16:2)的比例更高,约为76.91%。橄榄油和地沟油为碳源的鼠李糖脂的临界胶束浓度(CMC)分别为55 mg/L和80mg/L。相同投加量时,前者乳化性和乳化稳定性均优于后者。NY3菌降解含油污泥时,投加双糖脂含量高的鼠李糖脂会使C16-C30直链烷烃的去除率更高。  相似文献   

5.
目前鼠李糖脂生物表面活性剂主要由条件致病的铜绿假单胞菌生产获得,从而影响工业应用。为了开发一种相对安全的鼠李糖脂生产菌,将带有不同强度组成型合成启动子的鼠李糖基转移酶基因(Rhamnosyltransferase gene,rhl AB)以单、中、高3种拷贝数分别在大肠杆菌ATCC 8739中异源表达,实现了不同产量的鼠李糖脂异源合成。对rhl AB基因和rha BDAC基因簇(TDP-L-鼠李糖合成的基因簇)进一步利用合成启动子进行组合调控,筛选获得了最优生产鼠李糖脂工程菌——大肠杆菌TIB-RAB226。对大肠杆菌TIB-RAB226进行发酵温度优化,鼠李糖脂产量达到124.3 mg/L,是优化前的1.17倍。通过分批补料发酵,12h时鼠李糖脂产量达到209.2 mg/L。对发酵产物进行高效液相色谱-质谱联用技术分析,共检出相对含量变化的5类质核比不同的鼠李糖脂同系物。本研究可为异源合成产鼠李糖脂提供重要参考。  相似文献   

6.
鼠李糖脂是近年来具有广阔应用前景的生物表面活性剂之一,因应用范围广和环境友好等特点,使其成为潜在的合成表面活性剂的替代品。本研究以一株能产生鼠李糖脂的铜绿假单胞菌(Pseudomonas aeruginosa)DN1为研究对象,采用Plackett-Burman设计和响应曲面方法(RSM)对其产鼠李糖脂的发酵条件进行优化。Plackett-Burman试验设计表明,磷酸盐、C/N比和p H值对鼠李糖脂的产量具有显著影响。在此基础上,采用RSM对3个显著因素的最佳水平范围进行研究,结果表明当磷酸盐为1.71 g/L、C/N比为15.5、p H值为6.5时,其理论最佳鼠李糖脂产量为40.4 g/L,与实测鼠李糖脂产量39.84 g/L非常接近。摇瓶优化后的鼠李糖脂产量较优化前的22.9 g/L提高了73.97%。  相似文献   

7.
以1株从原油污染样品中分离获得的铜绿假单胞菌XJ601为研究对象,采用蒽酮比色法定量分析鼠李糖脂,优化其产鼠李糖脂的培养基组成。研究表明:疏水性底物优于亲水性底物,具有更高的鼠李糖脂产量,尤以菜籽油最佳;氮源中,硝酸盐、NH_4Cl能促进鼠李糖脂的合成,以菜籽油为碳源时,最佳氮源为NaNO_3;C/N比值在20时,鼠李糖脂产量最高;P元素的微量添加会影响鼠李糖脂的合成。摇瓶培养获得的鼠李糖脂对不同温度、pH及NaCl浓度都具有较好的稳定性,表明其在三次采油及原油污染生物治理等领域具有较好的应用前景。  相似文献   

8.
鼠李糖脂是一种具有巨大潜力的阴离子生物表面活性剂,可应用于石油、食品、农业、日化工业等领域。探讨以抽油烟机废油为碳源发酵产鼠李糖脂的可能性,以铜绿假单胞菌WB505为出发菌体,在7 L发酵罐中鼠李糖脂的产量达到12.3±0.52 g/L。利用基质辅助激光解析飞行时间质谱(MALDI-TOF MS)分析出所产鼠李糖脂的组成,结果显示其主要含Rha-C_(10)-C_(10)和Rha_2-C_(10)-C_(10),其中单鼠李糖脂和双鼠李糖脂的总相对丰度分别为49.7%和50.3%。所产鼠李糖脂的临界胶束浓度(CMC)为45.0 mg/L,能将表面张力从60.5±0.81 mN/m降至25.3±0.68 mN/m,乳化系数E24均60%,并且对苯的乳化系数达到80.3±0.85%。以抽烟机废油为底物生产鼠李糖脂降低底物成本,为抽油烟机废油提供一种循环再利用处理方式。  相似文献   

9.
通过诱变选育,将铜绿假单胞菌(Pseudomonas aeruginosa)RG-14利用甘油发酵生产鼠李糖脂产量由13.6g/L提高到16.5 g/L。突变株经过5次连续传代培养,菌株仍维持稳定的鼠李糖脂产量,表明该菌株具有较好的遗传稳定性。利用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)技术分析诱变后菌株发酵甘油生产鼠李糖脂的组成,结果显示鼠李糖脂由Rha-C8-C8、Rha-C8-C10、Rha-C10-C10、Rha-C10-C12∶1、Rha-C10-C12、Rha2-C8-C10、Rha2-C10-C10、Rha2-C10-C12∶1和Rha2-C10-C12组成,其中单、双鼠李糖脂的相对丰度分别为54.8%和45.2%。当以工业粗甘油代替精甘油为底物时,该菌株鼠李糖脂产量达到14.2 g/L,表明其具有较好的应用潜力。  相似文献   

10.
鼠李糖脂因其具有环境友好和卓越的物理化学特性,而有望成为化学合成表面活性剂的替代物。近年来鼠李糖脂得到了广泛的研究,其目的是利用低价的可再生资源进行大规模生产,但目前的研究成果仍不足以选育出更具商业竞争力的鼠李糖脂过量合成菌株。为此,进一步理解鼠李糖脂生物合成的复杂基因调控网络,探索降低生产成本的发酵工艺势在必行。综述了铜绿假单胞菌中鼠李糖脂的生物合成途径、群体感应对主要基因的调控、鼠李糖脂在生物膜形成中所发挥的作用,以及发酵优化对鼠李糖脂产量的影响。有助于加深对鼠李糖脂生物合成的认识,为提高鼠李糖脂产量提供重要参考信息。  相似文献   

11.
Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.  相似文献   

12.
Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10–30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography–mass spectroscopy (LC-MS), and 1H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.  相似文献   

13.
鼠李糖脂因其具有环境友好和卓越的物理化学特性,而有望成为化学合成表面活性剂的替代物。近年来鼠李糖脂得到了广泛的研究,其目的是利用低价的可再生资源进行大规模生产,但目前的研究成果仍不足以选育出更具商业竞争力的鼠李糖脂过量合成菌株。为此,进一步理解鼠李糖脂生物合成的复杂基因调控网络,探索降低生产成本的发酵工艺势在必行。综述了铜绿假单胞菌中鼠李糖脂的生物合成途径、群体感应对主要基因的调控、鼠李糖脂在生物膜形成中所发挥的作用,以及发酵优化对鼠李糖脂产量的影响。有助于加深对鼠李糖脂生物合成的认识,为提高鼠李糖脂产量提供重要参考信息。  相似文献   

14.
The potential production of rhamnolipids was demonstrated using the thermophilic eubacterium Thermus thermophilus HB8 and sunflower seed oil or oleic acid as carbon sources. Sunflower seed oil was directly hydrolyzed by secretion of lipase and became a favorable carbon source for rhamnolipids production. Rhamnolipids levels were attainted high values, comparable to those produced by Pseudomonas strains from similar sources. Rhamnolipids synthesis in oleic acid exhibited a long period of induction, while in sunflower seed oil, the synthesis is more rapid. Glucose resulted in a more protracted period of rhamnolipids production after exhaustion of each or both carbon sources. Both mono- and di-rhamnolipids were identified by thin-layer chromatography (TLC) in the total rhamnolipids extract. The molecular composition of the produced biosurfactant was evaluated by Fourier transform infrared (FTIR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and LC-MS analysis. Furthermore, secretion of rhamnolipids was confirmed on agar plates. The antimicrobial activity of rhamnolipids was detected against the bacterium Micrococcus lysodeikticus using a lysoplate assay. These results demonstrate that rhamnolipids produced in these substrates can be useful in both environmental and food industry applications by using cheap oil wastes. The alternative use of this thermophilic microorganism opens a new perspective concerning the valorization of wastes containing plant oils or frying oils to reduce the cost of rhamnolipids production.  相似文献   

15.
产油真菌在甘薯淀粉废水中发酵的初步研究   总被引:1,自引:0,他引:1  
目的:利用甘薯淀粉废水发酵低成本获取微生物油脂。方法:以甘薯淀粉废水为发酵基质,进行菌株筛选、发酵工艺优化及油脂成分的气相色谱分析。结果:筛选出一株刺孢小克银汉霉F7,生物量为19.375g/L,含油量为45.1%。菌株F7发酵第11天生物量达到18.140g/L,含油量达到51.2%,COD去除率87%。研究发现与对照相比,NaAc和KH2PO4对生长、产油以及出水COD去除有显著促进作用,NaAc2g/L时生物量提高了25.4%,含油量提高了4.4%,COD下降了52.0%,KH2PO4的作用稍次之。结论:资源化利用甘薯淀粉废水发酵生产微生物油脂同时降低废水COD是一条可行的途径,可以为生物柴油提供廉价油源。  相似文献   

16.
As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.  相似文献   

17.
Glycerol, cassava wastewater (CW), waste cooking oil and CW with waste frying oils were evaluated as alternative low-cost carbon substrates for the production of rhamnolipids and polyhydroxyalkanoates (PHAs) by various Pseudomonas aeruginosa strains. The polymers and surfactants produced were characterized by gas chromatography–mass spectrophotometry (MS) and by high-performance liquid chromatography–MS, and their composition was found to vary with the carbon source and the strain used in the fermentation. The best overall production of rhamnolipids and PHAs was obtained with CW with frying oil as the carbon source, with PHA production corresponding to 39% of the cell dry weight and rhamnolipid production being 660 mg l−1. Under these conditions, the surface tension of the culture decreased to 30 mN m−1, and the critical micelle concentration was 26.5 mg l−1. It would appear that CW with frying oil has the highest potential as an alternative substrate, and its use may contribute to a reduction in the overall environmental impact generated by discarding such residues.  相似文献   

18.
鼠李糖脂是当前研究和应用最热门的生物表面活性剂之一,广泛应用于石油开采、环境修复、农业等领域.与化学表面活性剂相比,鼠李糖脂较低的合成产量导致其生产成本相对较高,限制了鼠李糖脂的大规模推广应用.因此,开展鼠李糖脂的高产优化调控研究,对于推动鼠李糖脂的研究与应用具有重要意义.本文简要介绍了鼠李糖脂的生物合成与影响因素;重...  相似文献   

19.
Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC(10)C(10) predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha(2)C(10)C(10) predominantly.  相似文献   

20.
Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号