首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predators impose strong selection on their prey, regulate prey populations and engage in coevolutionary interactions with their prey. The intensity of selection and the strength of coevolutionary interactions will depend on how stringent predators are in their choice of prey. We estimated susceptibility of different species of birds to predation by two common raptors, the northern goshawk Accipiter gentilis and the Eurasian sparrowhawk A. nisus, in an agricultural landscape in Denmark and boreal forests in Finland. We estimated susceptibility to predation as the deviation of the log10‐transformed observed frequency of prey of different species from the log10‐transformed expectation based on population density during the breeding season. We found a high degree of consistency in susceptibility to predation by the goshawk in two areas in Finland. More importantly, there was significant consistency in susceptibility to predation between Denmark and Finland, albeit the degree of consistency in the goshawk was higher than in the sparrowhawk. There was considerable overlap in susceptibility to predation between goshawk and sparrowhawk in Denmark, but not in Finland, implying differences in intensity of interspecific competition as reflected by a much higher extent of goshawk predation on sparrowhawks in Denmark than in Finland. Our findings suggest that hawks impose similar selection pressures on their prey populations, and that the degree of consistency has implications for intensity of interspecific killing.  相似文献   

2.
Abstract Population size-structure is often ignored in assemblage-level studies of reef fishes, which usually rely on static and dynamic patterns of relative total abundance to infer what mechanisms organize those assemblages. However, body size has substantial effects on processes that affect competitive relationships between species: (i) small, recently recruited fish, which usually(?) suffer high mortality, can dominate total abundance and strongly influence the dynamics of the relative total abundances of different species, while having little effect on interspecific biomass relations; (ii) numeric abundance and biomass of a species can vary independently, due to habitat variation in population size-structure resulting from variation in mortality and growth, as well as habitat selection; and (iii) population size-structure affects the potential for and outcome of interspecific competition due to (a) ontogenetic change in types of resources used, (b) levels of resource needs being dependent on individual and species biomass rather than numbers, (c) advantages due to large size in behavioural contests, (d) variation in population size-structure being linked to habitat preference, which affects expression of competitive dominance, and (e) size dependency in the development of interspecific resource-sharing relationships. Assemblage-level analyses that ignore such size effects may fail to detect important effects of interspecific interactions.  相似文献   

3.
Geographic variation and interspecific differentiation in body size (body length) were analyzed for 15 species of the carabid subgenus Ohomopterus (genus Carabus; Coleoptera, Carabidae) in Japan. Local species assemblages of this subgenus consist of up to 5 species of different size classes. These beetles exhibited sexual dimorphism in body size where females are larger than males, except Carabus uenoi, in which the male and female sizes were equivalent, possibly because of the exaggerated male genitalia. In 9 of 15 species, there was a positive correlation between mean body size and annual mean temperature of habitat, representing the converse of Bergmann's rule. However, in some cases this correlation does not hold over the range of a species because of regional differences. When allopatric and sympatric populations were compared, allopatric populations of Carabus albrechti and C. japonicus had larger bodies than sympatric populations. These intraspecific differences may have resulted from character displacement. In each local assemblage with 2 or more species, there was little interspecific overlap of body size, although the body size ratio between two species with adjacent body sizes seldom showed strict constancy. The mean size ratio between 2 adjacent species in an assemblage was reduced with the number of species, whereas the size ratio of the largest to smallest species in an assemblage increased with the number of species (i.e., the expansion of body size range). These results indicate that the body size of Ohomopterus species may have evolved in response to both climatic conditions and interspecific interactions. Because each species or species group represents the same size class over the distribution range and similar-sized species are parapatric or allopatric, the interspecific segregation in body size in local assemblages may have resulted mainly from a size assortment process during colonization. Received: June 8, 2000 / Accepted: October 10, 2000  相似文献   

4.
Carabid beetle communities were studied at three levels of spatial scale, i.e. within fields (three sets of traps, mean distance 15 m), between fields (five fields within 1 km from each other) and between patches of farmland (four study areas 4-8 km from each other). We compared carabid assemblages sampled on five crop types in each study area, i.e. ley. set-aside, spring cereal, potato, and sugar beet. Because of small sample sizes, only the community composition was studied within fields with a DCA ordination, but the differences were small. Analyses of species richness, activity density, community composition as revealed by DCA ordinations, dominance structure, diversity, and evenness showed that carabid communities varied significantly among patches of farmland but not between fields with different crops within the patches. Only the communities of potato fields were found lo resemble each other. Only five carabid beetle species showed a preference for crops, and twelve species favoured some study areas. We conclude that the effect of spatial scale should be emphasised in further studies as it seems that carabid beetles may be very localised even in agricultural habitats.  相似文献   

5.
Carabid beetles (Coleoptera, Carabidae) were collected by using pitfall traps in 68 sites on the Åland Islands, SW Finland The sites were divided into four environmental types 1) cultivated fields and grazed pastures. 2) recently abandoned fields, 3) abandoned, overgrown cultivations, and 4) forests A total of 4901 carabids belonging to 77 species were caught Twenty of the most abundant species were classified into four distributional types according to their occurrence among the various environmental types 1) generalists (five species), 2) field species (five species), 3) species of open habitat (seven species), and 4) forest species (three species) Associations with environmental types were strictest among field species and forest species However, most of the species were found in low numbers outside each preferred environmental type The number of species and species diversity was highest in fields and pastures and lowest in forests, which agrees with previously detected patterns on the mainland Finland Pairwise similarity of the carabid assemblages among the environmental types was highest between the two types of abandoned cultivations The spatial distribution of two carabid species, Pterostichus melanarius and P niger , were examined in detail to ascertain whether any interspecific interaction could help explain their different island-mainland distribution observed in previous studies  相似文献   

6.
According to the intermediate disturbance hypothesis (IDH), species diversity should be higher at sites with intermediate levels of disturbance. We tested this hypothesis using ground beetles (Coleoptera: Carabidae) collected in pitfall traps from sites that varied in time since last disturbance. This successional gradient was embedded in an urban landscape near Montreal, Quebec. We predicted that diversity in young forests and old fields would be higher than in agricultural fields and old forests. Fifty-five species (2932 individuals) were found in 2003 and 46 species (2207 individuals) in 2004. In both years, species richness was highest from traps placed in agricultural fields. We collected nine introduced species; these had higher catch rates than the native species in both years (64.8% of total catch). When introduced species were removed from the Nonmetric Multidimensional Scaling ordination analysis, the assemblages from agricultural fields were less distinct compared to those of the other habitats, suggesting the introduced fauna is important in structuring carabid assemblages from the agricultural fields. Introduced species may play a significant role in the community composition of ground beetles in urban landscapes, and their influence may be the cause of the lack of support found for the IDH.  相似文献   

7.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

8.
The ground beetle Pterostichus melanarius (Coleoptera, Carabidae), of European origin, is abundant and wide-spread in the northern United States and southern Canada Three field enclosures were used in a four-year experiment in Alberta, Canada, to examine whether the species is able to establish in natural aspen-poplar forest, and to test the hypothesis that it has an adverse effect on the native carabid assemblage After introduction to the enclosures P melanarius maintained breeding populations in them, establishing that the forest is suitable habitat for the species, and suggesting that the species will eventually invade from nearby populations Pterostichus melanarius had no negative effect on population size or body mass of the native carabid species However, the two most abundant native species (Ptero-stichus adstrictus and P pensvlvanicus) appeared to be more active (measured as escape rate) in compartments where they co-occurred with P melanarius Although the three enclosures were just a few metres apart, one of them consistently yielded the highest densities of all carabid species This difference was correlated with high abundance of earthworms and low litter accumulation Relatively low densities of P melanarius may explain the lack of negative interspecific interactions in forests, although such effects are suggested by data from urban and agricultural environments where P melanarius is more abundant  相似文献   

9.
Many paddy fields in the mountainous rural areas of Japan have been abandoned since the 1960s, and forests have regenerated on these sites. In a mountainous area on Sado Island, a large number of abandoned paddies were converted into wetlands and open terrestrial vegetation. In this study, we used pitfall traps to examine the effects of the creation of open vegetation on carabid beetle assemblages by investigating 14 sites spanning five vegetation types: six sites in secondary forests (three coppice forests and three 40‐year‐old regenerating forests on abandoned paddies), three each in clear‐cuts and paddy levees, and two in grasslands. The 14 study sites were clearly separated into two groups different in the species composition of carabid beetles: secondary forest and grassland‐levee groups. The species composition of two clear‐cut sites was similar to that of secondary forests, whereas that of the remaining one clear‐cut site was similar to that of grasslands. Analyses of species responses showed various habitat preferences, e.g., for only coppice forests, for two types of secondary forests, for secondary forests and clear‐cuts, for clear‐cuts and grasslands, and for grasslands or levees, or no clear preference. There were no characteristic species in the regenerating forests. These results suggest that the 40‐year‐old regenerating forests may sustain only a limited subset of the carabid fauna found in coppice forests and that the creation of open vegetation in the abandoned paddies enhances carabid diversity at the landscape level by raising β diversity among the different vegetation types.  相似文献   

10.
Steven J. Presley 《Oikos》2011,120(6):832-841
Patterns of aggregation of species or individuals may result from combinations of interspecific interactions such as competition, facilitation, or apparent facilitation, as well as from equivalent responses to environmental factors. Host–parasite systems are ideal for the investigation of mechanisms that structure assemblages. Interspecific aggregation is documented for multiple groups that are ectoparasitic on mammals and host‐mediated apparent facilitation has been suggested to explain these aggregation patterns. To investigate the generality of this pattern and to determine likely structuring mechanisms, I analyzed species co‐occurrence, correlations of abundances, and nestedness for ectoparasite assemblages from each of 11 species of Neotropical bat. Ectoparasite assemblages on four of 11 host species exhibited significant positive co‐occurrence for the entire assemblage or for at least one pair of species in the assemblage; ectoparasites on two host species exhibited positive co‐occurrence that approached significance. There was no evidence of negative co‐occurrence. Nine species‐pairs exhibited positive abundance correlations, including seven of the eight species‐pairs that exhibited positive co‐occurrence. No species‐pair exhibited a negative correlation of abundances (i.e. density compensation). Ectoparasite assemblages from five of 11 host species exhibited nestedness, including all three assemblages that exhibited assemblage‐wide positive co‐occurrence. Multiple mechanisms associated with host characteristics may contribute to host aggregation in ectoparasite assemblages, including host body size, vagility, home range size, burrow or roost size and complexity, immunocompetence and social structure. In general, data in this study and elsewhere are not consistent with interspecific interactions among ectoparasites, including apparent facilitation, being primary structuring mechanisms of ectoparasite assemblages on mammalian hosts. Rather, host behavior and ecology are likely to affect the frequency of host–ectoparasite encounters and of conspecific host interactions that facilitate transfer of ectoparasites, thereby, molding patterns of ectoparasite co‐occurrence, abundance and species composition on mammalian hosts. Combinations of characteristics that are primarily responsible for molding ectoparasite assemblage composition likely are host‐taxon specific.  相似文献   

11.
Using a large body of observational data on the occurrence ofSorex shrews in boreal forests, we test two models that predict the structure of small mammal communities along a gradient of increasing habitat productivity. Tilman’s (1982) model predicts a humped curve of species richness along productivity gradients. In contrast, we found a linear increase in species richness with increasing logarithm of the pooled density of shrews, which we use as a measure of habitat productivity for shrews. The model of Hanski and Kaikusalo (1989) assumes a trade-off between exploitative and interference competitive abilities, and it predicts that the size structure of small mammal communities should shift from the dominance of small species (superior in exploitative competition) in unproductive habitats to the dominance of large species (superior in interference competition) in productive habitats. Shrew assemblages show such a shift. Though it is not possible to draw definite conclusions about the role of interspecific competition from our observational data, the changing size structure of local shrew assemblages with increasing habitat productivity is a predictable feature of their community structure.  相似文献   

12.
13.
LeBrun EG 《Oecologia》2005,142(4):643-652
A wide variety of animal communities are organized into interspecific dominance hierarchies associated with the control and harvest of food resources. Interspecific dominance relationships are commonly found to be linear. However, dominance relations within communities can form a continuum ranging from intransitive networks to transitive, linear dominance hierarchies. How interference competition affects community structure depends on the configuration of the dominance interactions among the species. This study explores how resource size and the trait-mediated indirect effect (TMIE) specialist phorid fly parasitoids exert on interference competition, affect the transitive nature of competitive interactions in an assemblage of woodland ants. I quantify the linearity of networks of interactions associated with large and small food resources in the presence and absence of phorid parasitoids. Two distinct, significantly linear dominance hierarchies exist within the ant assemblage depending on the size of the disputed resource. However, the presence of phorid fly parasitoids eliminates the linearity of both dominance hierarchies. The hosts phorid defense behaviors reduce the competitive asymmetries between the host and its subdominant competitors, increasing the indeterminacy in the outcome of competitive interactions. Thus, both resource size variation and phorid-induced TMIEs appear to facilitate coexistence in assemblages of scavenging ants.  相似文献   

14.
15.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

16.
17.
One of the main natural disturbances that affects the structure of rain forests is treefalls, frequently resulting in gaps. Tree‐fall gaps can bring drastic changes in environmental conditions compared with the undisturbed understory. We investigated the effect of tree‐fall gaps on fruit‐feeding butterfly (Nymphalidae) species assemblages in an undisturbed lowland rain forest in southeastern Peru. We used fruit‐baited traps suspended 2 m above ground in 15 tree‐fall gaps ranging in area from 100 to 1000 m2 and in adjacent undisturbed understory. Our data support the hypothesis that tree‐fall gap and understory habitats are utilized by different butterfly species assemblages. There were morphological differences between gap and understory species, where the understory species had a larger wing area to thoracic volume. Vegetation structure and composition were important factors affecting the butterfly assemblages. Most of the butterfly species showed an avoidance of vines and a strong association with the presence of trees and shrubs in gaps. There were also differences among gap assemblages that increased with gap size. Some of the species that were associated with gaps have been considered as canopy species. Other gap species in the present study, however, are known to feed on fruits and/or use host plants mainly, or only, occurring in gaps, implicating that the gap assemblage is a mix of canopy species and those unique to gaps. This indicates that, in an undisturbed Amazon forest, tree‐fall gaps may contribute to maintain species diversity by creating a mosaic of specific habitats and resources that favors different butterfly assemblages.  相似文献   

18.
Langkilde T  Shine R 《Oecologia》2004,140(4):684-691
Direct interference competition between sympatric taxa affects habitat use and shelter-site selection in species within most major vertebrate lineages. However, studies on interspecific social interference in reptiles largely have been confined to research on interactions between non-native (invasive) species and native fauna. Does interspecific interference also influence habitat use within natural assemblages of reptiles? We studied five broadly sympatric species of viviparous montane skinks within the genera Egernia and Eulamprus in southeastern Australia. Previous work has shown strong interspecific overlap in abiotic attributes of shelter-sites for these taxa, but no joint occupancy of retreats. Laboratory trials in which we manipulated the identity of co-occurring lizards revealed frequent displacement from “preferred” (hotter) shelters, with interspecific interactions more intense than intraspecific conflicts. The five species displayed a linear interspecific dominance hierarchy, with larger species displacing smaller taxa. Field manipulations confirmed that interspecific interactions between these species affect shelter-site use. We conclude that direct agonistic encounters between individuals of different species strongly influence habitat use by lizards within this assemblage.  相似文献   

19.
Assemblage structure and acquisition of high-value resources will usually be affected by changes in resource availability and differential competitive abilities of assemblage members. In fragmented habitats where carrying capacity limits are exceeded due to high population densities and biomass, interspecific interactions can be expected to occur at a high frequency, potentially turning into an important cost for coexistence. We studied assemblage- and guild-level patterns of interspecific interactions in two highly diverse isolated primate assemblages in southern Amazonia. Specifically, we assessed the effects of temporal variation in fruit availability on the rates of interspecific interactions between gray woolly monkeys (Lagothrix lagotricha cana), one of the largest tree-dwelling mammals of the Amazon forests, and nine syntopic primate species. We found that fruit availability positively predicted rate of intraguild interactions in contrast to overall assemblage interaction rate. We did not find statistical evidence for the effect of fruit availability on the assemblage rates of type-dependent (i.e., agonistic or non-agonistic) and context-dependent (i.e., feeding or non-feeding) interactions. However, there was a clear trend toward increased feeding-related and agonistic-related interactions as fruit availability increased, with agonistic interactions mostly occurring at guild-level. These results provide support for a significant role of fruit availability in structuring spatial–temporal intraguild interactions at our study sites. Costly interspecific interactions and spatial habitat overlap can be expected to occur at a high frequency in highly diverse assemblages living in human-modified landscapes, which in turn, can have potentially negative impacts to the species involved.  相似文献   

20.
Carabid beetles form rich and abundant communities in arable landscapes. Their generalist feeding behaviour and similar environmental requirements raise questions about the mechanisms allowing the coexistence of such species‐rich assemblages. We hypothesized that subtle niche partitioning comes into play on spatial, temporal, or trophic basis. To test this, we performed experiments and made observations on the behaviour of two sympatric carabid species of similar size and life cycle, Bembidion quadrimaculatum L. and Phyla obtusa Audinet‐Serville (both Coleoptera: Carabidae: Bembidiini). We compared plant climbing behaviour, daily activity patterns, and trophic preferences between the two carabid species under laboratory conditions. Whereas no clear difference in trophic preference was observed, our results suggest temporal niche differentiation at the nychthemeron scale (a period of 24 consecutive hours), with one of the species being more diurnal and the other more nocturnal, and spatial differentiation in their habitat use at the plant stratum scale. Intra‐specific variation suggests that micro‐scale spatio‐temporal niche differentiation could be mediated by behavioural plasticity in these two carabid species. We speculate that such behavioural plasticity may provide carabid beetles with a high adaptive potential in intensively managed agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号