首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The insulin-like growth factor type I receptor (IGF-IR) has been suggested to play an important role in prostate cancer progression and possibly in the progression to androgen-independent (AI) disease. The term AI may not be entirely correct, in that recent data suggest that expression of androgen receptor (AR) and androgen-regulated genes is the primary association with prostate cancer progression after hormone ablation. Therefore, signaling through other growth factors has been thought to play a role in AR-mediated prostate cancer progression to AI disease in the absence of androgen ligand. However, existing data on how IGF-IR signaling interacts with AR activation in prostate cancer are conflicting. In this Prospect article, we review some of the published data on the mechanisms of IGF-IR/AR interaction and present new evidence that IGF-IR signaling may modulate AR compartmentation and thus alter AR activity in prostate cancer cells. Inhibition of IGF-IR signaling can result in cytoplasmic AR retention and a significant change in androgen-regulated gene expression. Translocation of AR from the cytoplasm to the nucleus may be associated with IGF-induced dephosphorylation. Since fully humanized antibodies targeting the IGF-IR are now in clinical trials, the current review is intended to reveal the mechanisms of potential therapeutic effects of these antibodies on AI prostate cancers.  相似文献   

7.
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers.  相似文献   

8.
9.
10.
Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa.  相似文献   

11.
12.
Androgen receptor (AR) signaling plays important roles in breast cancer progression. We show here that Kindlin-2, a focal adhesion protein, is critically involved in the promotion of AR signaling and breast cancer progression. Kindlin-2 physically associates with AR and Src through its two neighboring domains, namely F1 and F0 domains, resulting in formation of a Kindlin-2-AR-Src supramolecular complex and consequently facilitating Src-mediated AR Tyr-534 phosphorylation and signaling. Depletion of Kindlin-2 was sufficient to suppress Src-mediated AR Tyr-534 phosphorylation and signaling, resulting in diminished breast cancer cell proliferation and migration. Re-expression of wild-type Kindlin-2, but not AR-binding-defective or Src-binding-defective mutant forms of Kindlin-2, in Kindlin-2-deficient cells restored AR Tyr-534 phosphorylation, signaling, breast cancer cell proliferation and migration. Furthermore, re-introduction of phosphor-mimic mutant AR-Y534D, but not wild-type AR reversed Kindlin-2 deficiency-induced inhibition of AR signaling and breast cancer progression. Finally, using a genetic knockout strategy, we show that ablation of Kindlin-2 from mammary tumors in mouse significantly reduced AR Tyr-534 phosphorylation, breast tumor progression and metastasis in vivo. Our results suggest a critical role of Kindlin-2 in promoting breast cancer progression and shed light on the molecular mechanism through which it functions in this process.Subject terms: Cell signalling, Breast cancer  相似文献   

13.

Background  

Androgens are required for both normal prostate development and prostate carcinogenesis. We used DNA microarrays, representing approximately 18,000 genes, to examine the temporal program of gene expression following treatment of the human prostate cancer cell line LNCaP with a synthetic androgen.  相似文献   

14.
15.
Alimirah F  Chen J  Basrawala Z  Xin H  Choubey D 《FEBS letters》2006,580(9):2294-2300
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.  相似文献   

16.
Alterations of androgen receptor in prostate cancer   总被引:5,自引:0,他引:5  
The significance of androgens in the development of prostate cancer has been known for more than half century. During the last decade, a lot of effort has been put to study the significance of the specific nuclear receptor of the hormone, androgen receptor (AR). It has been suggested that polymorphisms, especially the length of CAG repeat in exon 1 of the gene, are associated with the risk of prostate cancer. However, not all studies have confirmed the association. Most surprisingly, it has now become clear that prostate carcinomas emerging during the androgen withdrawal therapy (i.e. hormone-refractory tumors) are capable of reactivating the AR-mediated signalling despite of the low levels of androgens. In addition, it has been shown that AR gene itself is genetically targeted. One-third of the hormone-refractory prostate carcinomas contains amplification of the gene. In addition, 10-30% of prostate carcinomas treated by antiandrogens acquire point mutation in the AR gene. The genetic alterations in AR indicate that receptor should be considered as putative treatment target. Evidently, the currently available antiandrogens are not capable to abolish the AR-mediated signalling efficiently enough.  相似文献   

17.
18.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

19.
Castration-resistant prostate cancer (CRPC) causes most of the deaths in patients with prostate cancer (PCa). The androgen receptor (AR) axis plays an important role in castration resistance. Emerging studies showed that the lysine demethylase KDM4B is a key molecule in AR signaling and turnover, and autophagy plays an important role in CRPC. However, little is known about whether KDM4B promotes CRPC progression by regulating autophagy. Here we used an androgen-independent LNCaP (LNCaP-AI) cell line to assay aberrant KDM4B expression using qPCR and western blot analysis and investigated the function of KDM4B in regulating cell proliferation. We found that KDM4B was markedly increased in LNCaP-AI cells compared with LNCaP cells. KDM4B level was significantly correlated with the Gleason score in PCa tissues. In vitro, KDM4B overexpression in CRPC cells promoted cell proliferation, whereas knockdown of KDM4B significantly inhibited cell proliferation. Upregulated KDM4B contributed to activate Wnt/β-catenin signaling and autophagy. Moreover, KDM4B activated autophagy by regulating the Wnt/β-catenin signaling. Finally, we demonstrated that autophagy inhibition attenuated KDM4B-induced CRPC cell proliferation. Our results provided novel insights into the function of KDM4B-driven CRPC development and indicated that KDM4B may be served as a potential target for CRPC therapy.  相似文献   

20.
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.Subject terms: Pancreatic cancer, Pancreatic cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号