首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(10):1467-1474
Atg17, in complex with Atg29 and Atg31, constitutes a key module of the Atg1 kinase signaling complex and functions as an important organizer of the phagophore assembly site in the yeast Saccharomyces cerevisiae. We have determined the three-dimensional reconstruction of the full S. cerevisiae Atg17-Atg31-Atg29 complex by single-particle electron microscopy. Our structure shows that Atg17-Atg31-Atg29 is dimeric and adopts a relatively rigid and extended “S-shape” architecture with an end-to-end distance of approximately 345 Å. Subunit mapping analysis indicated that Atg17 mediates dimerization and generates a central rod-like scaffold, while Atg31 and Atg29 form two globular domains that are tethered to the concave sides of the scaffold at the terminal regions. Finally, our observation that Atg17 adopts multiple conformations in the absence of Atg31 and Atg29 suggests that the two smaller components play key roles in defining and maintaining the distinct curvature of the ternary complex.  相似文献   

2.
The Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29, and Atg31, is a key initiator of autophagy. The Atg17-Atg31-Atg29 subcomplex is constitutively present at the phagophore assembly site (PAS), while Atg1 and Atg13 join the complex when autophagy is triggered by starvation or other signals. We sought to understand the energetics and dynamics of assembly using isothermal titration calorimetry (ITC), sedimentation velocity analytical ultracentrifugation, and hydrogen-deuterium exchange (HDX). We showed that the membrane and Atg13-binding domain of Atg1, Atg1EAT, is dynamic on its own, but is rigidified in its high-affinity (∼100 nM) complex with Atg13. Atg1EAT and Atg13 form a 2:2 dimeric assembly and together associate with lower affinity (∼10 μM) with the 2:2:2 Atg17-Atg31-Atg29 complex. These results lead to an overall model for the assembly pathway of the Atg1 complex. The model highlights the Atg13-Atg17 binding event as the weakest link in the assembly process and thus as a natural regulatory checkpoint.  相似文献   

3.
《Autophagy》2013,9(1):185-186
The Atg1 complex, comprising Atg1, Atg13, Atg17, Atg29, and Atg31, is a key initiator of autophagy. The Atg17-Atg31-Atg29 subcomplex is constitutively present at the phagophore assembly site (PAS), while Atg1 and Atg13 join the complex when autophagy is triggered by starvation or other signals. We sought to understand the energetics and dynamics of assembly using isothermal titration calorimetry (ITC), sedimentation velocity analytical ultracentrifugation, and hydrogen-deuterium exchange (HDX). We showed that the membrane and Atg13-binding domain of Atg1, Atg1EAT, is dynamic on its own, but is rigidified in its high-affinity (~100 nM) complex with Atg13. Atg1EAT and Atg13 form a 2:2 dimeric assembly and together associate with lower affinity (~10 μM) with the 2:2:2 Atg17-Atg31-Atg29 complex. These results lead to an overall model for the assembly pathway of the Atg1 complex. The model highlights the Atg13-Atg17 binding event as the weakest link in the assembly process and thus as a natural regulatory checkpoint.  相似文献   

4.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

5.
Atg11     
《Autophagy》2013,9(8):1275-1278
Selective macroautophagy uses double-membrane vesicles, termed autophagosomes, to transport cytoplasmic pathogens, organelles and protein complexes to the vacuole for degradation. Autophagosomes are formed de novo by membrane fusion events at the phagophore assembly site (PAS). Therefore, precursor membrane material must be targeted and transported to the PAS. While some autophagy-related (Atg) proteins, such as Atg9 and Atg11, are known to be involved in this process, most of the mechanistic details are not understood. Previous work has also implicated the small Rab-family GTPase Ypt1 in the process, identifying Trs85 as a unique subunit of the TRAPPIII targeting complex and showing that it plays a macroautophagy-specific role; however, the relationship between Ypt1, Atg9 and Atg11 was not clear. Now, a recent report shows that Atg11 is a Trs85-specific effector of the Rab Ypt1, and may act as a classic coiled-coil membrane tether that targets Atg9-containing membranes to the PAS. Here, we review this finding in the context of what is known about Atg11, other Rab-dependent coiled-coil tethers, and other tethering complexes involved in autophagosome formation.  相似文献   

6.
Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.  相似文献   

7.
In macroautophagy, de novo formation of the double membrane‐bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8‐family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8‐mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE‐16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE‐16 retained the capacities to trigger efficient membrane tethering at the protein‐to‐lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8‐mediated membrane‐tethering reactions require trans‐assembly between the membrane‐anchored forms of LC3B and GATE‐16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B‐ and GATE‐16‐mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE‐16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE‐16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature‐sensitive trans‐assembly of human Atg8‐family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.  相似文献   

8.
Autophagy pathways in eukaryotic cells mediate the turnover of a diverse set of cytoplasmic components, including damaged organelles and abnormal protein aggregates. Autophagy-mediated degradation is highly regulated, and defects in these pathways have been linked to a number of human disorders. The Atg1 protein kinase appears to be a key site of this control and is targeted by multiple signaling pathways to ensure the appropriate autophagic response to changing environmental conditions. Despite the importance of this kinase, relatively little is known about the molecular details of Atg1 activation. In this study we show that Atg13, an evolutionarily conserved regulator of Atg1, promotes the formation of a specific Atg1 self-interaction in the budding yeast, Saccharomyces cerevisiae. The appearance of this Atg1-Atg1 complex is correlated with the induction of autophagy, and conditions that disrupt this complex result in diminished levels of both autophagy and Atg1 kinase activity. Moreover, the addition of a heterologous dimerization domain to Atg1 resulted in elevated kinase activity both in vivo and in vitro. The formation of this complex appears to be an important prerequisite for the subsequent autophosphorylation of Thr-226 in the Atg1 activation loop. Previous work indicates that this modification is necessary and perhaps sufficient for Atg1 kinase activity. Interestingly, this Atg1 self-association does not require Atg17, suggesting that this second conserved regulator might activate Atg1 in a manner mechanistically distinct from that of Atg13. In all, this work suggests a model whereby this self-association stimulates the autophosphorylation of Atg1 within its activation loop.  相似文献   

9.
The Atg1 complex, which contains 5 major subunits: Atg1, Atg13, Atg17, Atg29, and Atg31, regulates the induction of autophagy and autophagosome formation. To gain a better understanding of the overall architecture and assembly mechanism of this essential autophagy regulatory complex, we have reconstituted a core assembly of the Saccharomyces cerevisiae Atg1 complex composed of full-length Atg17, Atg29, and Atg31, along with the C-terminal domains of Atg1 (Atg1[CTD]) and Atg13 (Atg13[CTD]). Using chemical-crosslinking coupled with mass spectrometry (CXMS) analysis we systematically mapped the intersubunit interaction interfaces within this complex. Our data revealed that the intrinsically unstructured C-terminal domain of Atg29 interacts directly with Atg17, whereas Atg17 interacts with Atg13 in 2 distinct intrinsically unstructured regions, including a previously unknown motif that encompasses several putative phosphorylation sites. The Atg1[CTD] crosslinks exclusively to the Atg13[CTD] and does not appear to make direct contact with the Atg17-Atg31-Atg29 scaffold. Finally, single-particle electron microscopy analysis revealed that both the Atg13[CTD] and Atg1[CTD] localize to the tip regions of Atg17-Atg31-Atg29 and do not alter the distinct curvature of this scaffolding subcomplex. This work provides a comprehensive understanding of the subunit interactions in the fully assembled Atg1 core complex, and uncovers the potential role of intrinsically disordered regions in regulating complex integrity.  相似文献   

10.
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane‐bound vesicles termed autophagosomes. The conserved Atg5–Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5–Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5–Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre‐autophagosomal structure but is essential for autophagy and cytoplasm‐to‐vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5–Atg12/Atg16 complex during autophagosome formation.  相似文献   

11.
Tang HW  Wang YB  Wang SL  Wu MH  Lin SY  Chen GC 《The EMBO journal》2011,30(4):636-651
Autophagy is a membrane-mediated degradation process of macromolecule recycling. Although the formation of double-membrane degradation vesicles (autophagosomes) is known to have a central role in autophagy, the mechanism underlying this process remains elusive. The serine/threonine kinase Atg1 has a key role in the induction of autophagy. In this study, we show that overexpression of Drosophila Atg1 promotes the phosphorylation-dependent activation of the actin-associated motor protein myosin II. A novel myosin light chain kinase (MLCK)-like protein, Spaghetti-squash activator (Sqa), was identified as a link between Atg1 and actomyosin activation. Sqa interacts with Atg1 through its kinase domain and is a substrate of Atg1. Significantly, myosin II inhibition or depletion of Sqa compromised the formation of autophagosomes under starvation conditions. In mammalian cells, we found that the Sqa mammalian homologue zipper-interacting protein kinase (ZIPK) and myosin II had a critical role in the regulation of starvation-induced autophagy and mammalian Atg9 (mAtg9) trafficking when cells were deprived of nutrients. Our findings provide evidence of a link between Atg1 and the control of Atg9-mediated autophagosome formation through the myosin II motor protein.  相似文献   

12.
To survive extreme environmental conditions, and in response to certain developmental and pathological situations, eukaryotic organisms employ the catabolic process of autophagy. Structures targeted for destruction are enwrapped by double-membrane vesicles, then delivered into the interior of the lysosome/vacuole. Despite the identification of many specific components, the molecular mechanism that directs formation of the sequestering vesicles remains largely unknown. We analyzed the trafficking of Atg23 and the integral membrane protein Atg9 in the yeast Saccharomyces cerevisiae. These components localize both to the pre-autophagosomal structure (PAS) and other cytosolic punctate compartments. We show that Atg9 and Atg23 cycle through the PAS in a process governed by the Atg1-Atg13 signaling complex. Atg1 kinase activity is essential only for retrograde transport of Atg23, while recycling of Atg9 requires additional factors including Atg18 and Atg2. We postulate that Atg9 employs a recycling system mechanistically similar to that used at yeast early and late endosomes.  相似文献   

13.
Atg9 is a transmembrane protein that is essential for autophagy. In the budding yeast Saccharomyces cerevisiae, it has recently been revealed that Atg9 exists on cytoplasmic small vesicles termed Atg9 vesicles. To identify the components of Atg9 vesicles, we purified the Atg9 vesicles and subjected them to mass spectrometry. We found that their protein composition was distinct from other organellar membranes and that Atg9 and Atg27 in particular are major components of Atg9 vesicles. In addition to these two components, Trs85, a specific subunit of the transport protein particle III (TRAPPIII) complex, and the Rab GTPase Ypt1 were also identified. Trs85 directly interacts with Atg9, and the Trs85-containing TRAPPIII complex facilitates the association of Ypt1 onto Atg9 vesicles. We also showed that Trs85 and Ypt1 are localized to the preautophagosomal structure in an Atg9-dependent manner. Our data suggest that Atg9 vesicles recruit the TRAPPIII complex and Ypt1 to the preautophagosomal structure. The vesicle-tethering machinery consequently acts in the process of autophagosome formation.  相似文献   

14.
Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97 kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198 kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.  相似文献   

15.
Taras Y Nazarko 《Autophagy》2014,10(7):1348-1349
Like other selective autophagy pathways, the selective autophagy of peroxisomes, pexophagy, is controlled by receptor protein complexes (RPCs). The pexophagic RPC in Pichia pastoris consists of several proteins: Pex3 and Pex14 ligands in the peroxisomal membrane, Atg30 receptor, Atg11, and Atg17 scaffolds, and the phagophore protein Atg8. Recently, we identified a new component of the pexophagic RPC, Atg37, which is involved in the assembly of this complex. Atg37 is an integral peroxisomal membrane protein (PMP) that binds Pex3 and Atg30, but not Pex14 or Atg8. In the absence of Atg37, the recognition of Pex3 and recruitment of Atg17 by Atg30 are normal. However, the recruitment of Atg11 is severely affected suggesting that the role of Atg37 is to facilitate the Atg30-Atg11 interaction. Palmitoyl-CoA competes with Atg30 for the acyl-CoA binding domain of Atg37 in vitro and might regulate the dynamics of the pexophagic RPC in vivo. The human counterpart of Atg37, ACBD5, also localizes to peroxisomes and is specifically required for pexophagy. Therefore, it is tempting to speculate that ACBD5/ATG37 regulates the assembly of the pexophagic RPC in mammalian cells.  相似文献   

16.
Macroautophagy (hereafter autophagy) initiates at the phagophore assembly site (PAS), where most of the AuTophaGy-related (Atg) proteins are at least transiently localized. As the first protein complex targeted to the PAS, the Atg17-Atg31-Atg29 complex serves as the scaffold for other Atg proteins and plays a critical role for the organization of the PAS, and in autophagy initiation. We recently showed that this complex is constitutively formed and activated by the phosphorylation of Atg29 when autophagy is induced. Phosphorylation of Atg29 is required for its interaction with Atg11, another scaffold protein, and its function for promoting the proper assembly of the PAS. Single-particle electron microscopy analysis of the Atg17-Atg31-Atg29 complex reveals an elongated structure with Atg29 located at the opposing ends. This structural arrangement allows Atg29 to interact with Atg11, and is critical in the organization of the intact Atg1 complex.  相似文献   

17.
In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17delta mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13delta mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17(C24R), showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.  相似文献   

18.
Autophagy induced by nutrient depletion is involved in survival during starvation conditions. In addition to starvation-induced autophagy, the yeast Saccharomyces cerevisiae also has a constitutive autophagy-like system, the Cvt pathway. Among 31 autophagy-related (Atg) proteins, the function of Atg17, Atg29, and Atg31 is required specifically for autophagy. In this study, we investigated the role of autophagy-specific (i.e., non-Cvt) proteins under autophagy-inducing conditions. For this purpose, we used atg11Delta cells in which the Cvt pathway is abrogated. The autophagy-unique proteins are required for the localization of Atg proteins to the pre-autophagosomal structure (PAS), the putative site for autophagosome formation, under starvation condition. It is likely that these Atg proteins function as a ternary complex, because Atg29 and Atg31 bind to Atg17. The Atg1 kinase complex (Atg1-Atg13) is also essential for recruitment of Atg proteins to the PAS. The assembly of Atg proteins to the PAS is observed only under autophagy-inducing conditions, indicating that this structure is specifically involved in autophagosome formation. Our results suggest that Atg1 complex and the autophagy-unique Atg proteins cooperatively organize the PAS in response to starvation signals.  相似文献   

19.
Roswitha Krick 《Autophagy》2016,12(11):2260-2261
In Saccharomyces cerevisiae Atg8 coupled to phosphatidylethanolamine is a key component of autophagosome biogenesis. Atg21 binds via 2 sites at the circumference of its β-propeller to PtdIns3P at the phagophore assembly site (PAS). It recruits and arranges both Atg8 and Atg16, which is part of the E3-like ligase complex Atg12–Atg5-Atg16. Binding of Atg8 to Atg21 requires the FK-motif within the N-terminal-helical domain of Atg8 and D146 at the top of the Atg21 β-propeller. Atg16 binds via D101 and E102 within its coiled-coil domain to Atg21.  相似文献   

20.
Autophagy is a conserved catabolic process that utilizes a defined series of membrane trafficking events to generate a de novo double-membrane vesicle termed the autophagosome, which matures by fusing to the lysosome. Subsequently, the lysosome facilitates the degradation and recycling of the cytoplasmic cargo. In yeast, the upstream signals that regulate the induction of starvation-induced autophagy are clearly defined. The nutrient-sensing kinase Tor inhibits the activation of autophagy by regulating the formation of the Atg1-Atg13-Atg17 complex, through hyperphosphorylation of Atg13. However, in mammals, the ortholog complex ULK1-ATG13-FIP200 is constitutively formed. As such, the molecular mechanism by which mTOR regulates mammalian autophagy is unknown. Here we report the identification and characterization of novel nutrient-regulated phosphorylation sites on ATG13: Ser-224 and Ser-258. mTOR directly phosphorylates ATG13 on Ser-258 while Ser-224 is modulated by the AMPK pathway. In ATG13 knock-out cells reconstituted with an unphosphorylatable mutant of ATG13, ULK1 kinase activity is more potent, and amino acid starvation induced more rapid ATG13 and ULK1 translocation. These events culminated in a more rapid starvation-induced autophagy response. Therefore, ATG13 phosphorylation plays a crucial role in autophagy regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号