首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neotropical grasslands have undergone intensive degradation by land conversion or biological invasion, but their restoration is still challenging. Here, we integrated two approaches to (1) assess the resilience of pristine dry and wet cerrado grasslands after removal of plants and topsoil and (2) evaluate the effectiveness of different treatments based on the material extracted from pristine grasslands to restore degraded dry and wet grasslands after pine invasion. We used old‐growth cerrado grasslands in southeastern Brazil as donor ecosystems and assessed their resilience after the removal of all plants and the upper 5‐cm soil layer. To restore both wet and dry grasslands, we tested topsoil translocation, plant transplantation, direct seeding, topsoil translocation + direct seeding, and needle layer removal. Both wet and dry grasslands were resilient to plants and topsoil removal, as evidenced by their fast recovery. The major mechanisms promoting resilience were seed germination in the wet grasslands and resprouting from underground organs in the dry grasslands. Transplantation was the most successful treatment to restore vegetation cover, species richness, and composition in both wet and dry grasslands, especially for herbaceous species. Restoration of the herbaceous layer of cerrado grasslands can be successful using natural ecosystems as donor sites without impairing their resilience in the studied scale. Improving the resilience of degraded dry and wet cerrado grasslands depends on reestablishing the condition to seed germination in the wet grasslands and reintroducing species with the ability to resprout after disturbance in the dry grasslands, attributes that explained the quick recovery of the donor ecosystems.  相似文献   

2.
To revegetate native plant communities, it is often cheaper to direct seed than to plant nursery‐grown stock. However, the outcomes of direct seeding can be quite variable, and it is unclear whether direct seeding or planting is more likely to facilitate the restoration of diverse plant communities. To address this question, we compared the outcomes of each method across several recent riparian revegetation projects where both direct seeding and tube‐stock planting were used. We surveyed riparian revegetation projects at seven sites within the greater Melbourne area that had been revegetated between 1 and 4 years previously. Sites were all on land previously used for agriculture or degraded public land and ranged in environmental and climatic conditions. Woody plant density, establishment of target species, species richness, species diversity (evenness) and plant heights were assessed. Direct seeding tended to result in higher plant densities and similar species richness, but lower rates of species establishment and diversity compared with planting. A median of 67% of target species established via direct seeding compared with 100% for planting, with direct seeded areas often dominated by one or two species. In general, overall revegetation outcomes were often driven by climatic and site factors, rather than revegetation method. We suggest that to achieve good restoration outcomes from revegetation in riparian areas, a bet‐hedging or combined approach using both sowing and planting may be the best strategy.  相似文献   

3.
选取青藏高原三江源区"黑土滩"型退化草地上建植的人工草地为研究对象,对不同建植年限人工草地植物群落及其各功能群的物种组成、平均高度、盖度和地上生物量及植物多样性等进行实地调查和对比分析,探讨"黑土滩型"退化草地在人工恢复过程中植物群落组成和多样性变化,以期回答人工恢复的草地植物群落何时才能接近天然草地、人工恢复的时间阈值应为多长等问题,从而为三江源区"黑土滩"型退化草地的恢复重建提供科学的理论指导。研究结果表明:草地恢复前5年内,禾本科植物的数量大量增加,植物群落的高度增加了847.6%,植物群落盖度增加了134.5%;不同恢复年限的草地植物群落的多样性指数都有相似的变化趋势,恢复8年后植物群落组成达到阶段性的稳定状态,在恢复时间达16—18年后,逐渐向更稳定的状态转化;恢复18年的草地与天然草地植物群落的Jaccard及Sorensen相似度指数分别为0.596、0.747,Cody差异度指数为9.5。由此可见,建植人工草地的方式恢复退化草地,可在建植8年后达较好的恢复效果;恢复时间达16年以上的人工草地采取适度的调控措施,有利于其向天然草地恢复演替;建植18年的人工草地物种组成情况与天然草地最接近,但仍有差异。因此,"黑土滩"型退化草地的人工促进恢复,到未退化的状态至少需要18年以上。  相似文献   

4.
Revegetation of degraded arid lands often involves supplementing impoverished seed banks and improving the seedbed, yet these approaches frequently fail. To understand these failures, we tracked the fates of seeds for six shrub species that were broadcast across two contrasting surface disturbances common to the Mojave Desert—sites compacted by concentrated vehicle use and trenched sites where topsoil and subsurface soils were mixed. We evaluated seedbed treatments that enhance soil‐seed contact (tackifier) and create surface roughness while reducing soil bulk density (harrowing). We also explored whether seed harvesting by granivores and seedling suppression by non‐native annuals influence the success of broadcast seeding in revegetating degraded shrublands. Ten weeks after treatments, seeds readily moved off of experimental plots in untreated compacted sites, but seed movements were reduced 32% by tackifier and 55% through harrowing. Harrowing promoted seedling emergence in compacted sites, particularly for the early‐colonizing species Encelia farinosa, but tackifier was largely ineffective. The inherent surface roughness of trenched sites retained three times the number of seeds than compacted sites, but soil mixing during trench development likely altered the suitability of the seedbed thus resulting in poor seedling emergence. Non‐native annuals had little influence on seed fates during our study. In contrast, the prevalence of harvester ants increased seed removal on compacted sites, whereas rodent activity influenced removal on trenched sites. Future success of broadcast seeding in arid lands depends on evaluating disturbance characteristics prior to seeding and selecting appropriate species and seasons for application.  相似文献   

5.
Once widespread, Australia's bluegrass tussock grasslands (dominated by Dichanthium sp.) of the Queensland Central Highlands are now severely endangered. Despite being biodiversity rich and highly valued as low input, nutrient‐dense grazing systems, bluegrass tussock grasslands have suffered extensive clearing and degradation over the last 150 years. Natural recovery of these grasslands is possible but rates of recovery are slow. As such, there is an urgent need to assess practical management strategies to accelerate recovery of these grasslands, with a particular focus on early‐successional stages, when aggressive exotic species are most prevalent. To date, no studies have tested whether commonly used grassland restoration strategies can enhance early‐successional stages and accelerate regeneration in this system. Here, we examine the early short‐term impacts (first two seasons) of two common grassland restoration approaches, with two variations each: direct seeding (single species and low seed diversity) and vegetation clearing (prescribed burning and glyphosate application) across two common starting points: a formerly cropped old field and a historically overgrazed natural grassland. No treatment increased native diversity (Shannon's or richness) in plots but the composition of burned plots in the old field did become more similar to healthy reference sites after two seasons. Burning combined with direct seeding also increased the abundance of the dominant grass, Dichanthium sericeum, toward healthy reference levels within the first two seasons post seeding. This study provides a practical assessment of the short‐term impacts and capacity of common grassland restoration treatments to enhance the recovery of Australia's tussock grassland systems.  相似文献   

6.
Plains rough fescue (Festuca hallii), once dominant in grasslands of the Northern Great Plains, has been reduced to remnants mainly through agricultural and energy sector development. This study assessed the impacts of oil and gas well site disturbances on plains rough fescue grassland to predict successional trends following disturbance. We examined trends in vegetation cover, richness, diversity, and community composition for two construction techniques (topsoil stripping, minimum disturbance), three revegetation methods (agronomic seed mix, native seed mix, natural recovery), and two reclamation scenarios (reclaimed within < 10 yrs; reclaimed within > 10 yrs) relative to adjacent undisturbed prairie (reference sites) over 28 years in 33 grassland sites. Reclamation success was more closely related to methods of construction and revegetation than years since reclamation. Species richness, diversity, both native and non-native species cover, and species composition were similar between undisturbed prairie and areas subject to minimum disturbance and natural recovery. In contrast, undisturbed prairie differed from areas with topsoil stripping and seeding to either agronomic or native species. Plant community composition on minimum disturbance sites with natural recovery was returning to a predisturbed plains rough fescue community within 10 years after reclamation. Impacts of construction method that involved intensive soil handling and seeding with native or non-native seed mixes were disruptive to recovery of fescue grassland. We therefore recommend retaining grassland sod intact through minimum disturbance and utilizing natural recovery as the best option for successful reclamation of native rough fescue grassland after well site disturbance.  相似文献   

7.
Litter‐removing disturbances such as fire in grasslands temporarily increase available resources for plants, opening a window of opportunity for new establishment as communities recover. At this time, new individuals or species could be added to the community as a result of germination from the local seed bank. In reconstructed grasslands this may be problematic, as the seed bank may contain a suite of undesired species reflective of prior and surrounding land uses. In two, 25‐year‐old, low‐diversity reconstructed grasslands, we tested the effect of local seed bank establishment following litter‐removing disturbance using seedling removal plots (1 m2) and plots where natural seedling establishment was allowed. Following disturbance, the vegetation was either left intact or hayed to enhance seedling establishment (a common practice following inter‐seeding efforts). Although the seed bank and seedling community were dominated by resident grasses (Andropogon gerardii and Poa pratensis), recruitment from the seed bank increased species richness and reduced evenness through the addition of forb species (including Cirsium arvense) in one of the study sites. Haying temporarily altered the abundances of the dominant grasses, but did not consistently affect seedling recruitment. Disturbances that facilitate seed bank recruitment may promote establishment of undesired species within reconstructed grassland communities, and we need to take steps to better manage the contributions into and recruitment from the seed bank to reconstruct sustainable grasslands.  相似文献   

8.
Rwenzori mountain range is important for its high diversity of unique species and as a water catchment area and yet very fragile to human interference. The study documented the impact of land use on ecology of uncultivated plant species in the Rwenzori mountain range using Bugoye sub‐county as a reference site. The ecological aspects of the plants studied included distribution, abundance and diversity of the plant species in and around the various land uses as well as in degraded, disturbed and undisturbed areas. Land uses identified were; agriculture, built up area and land with other activities (conservation and abandoned fields). The study revealed that agriculture was the main land use category taking up 69.7% of land use area. Plants distributed in and around the land uses were mainly trees with species diversity of 34.5%. Generally, there was no relationship in the distribution of plant species in degraded, undisturbed and disturbed areas (a = 0.01). In disturbed areas, there was vegetation cover especially of plant species that occur as secondary re‐growth, and in degraded areas, the ground was sparsely covered by primary succession species while in the undisturbed areas, plant species growing in a ‘natural. habitat dominated and most of them were climax species.  相似文献   

9.
The density of seeds in soil seed banks and the species composition of both seed banks and aboveground vegetation were examined in naturally restored sites (NRS) and aerially seeded sites (ASS) in the Hunshandak sandlands of northern China. Five sites were naturally restored 1, 2, 4, 8, and 15 years ago and four sites were aerially seeded 1, 2, 5, and 7 years ago. In total, 36 species were recorded in the seed bank and 41 species in the aboveground vegetation for all NRS, whereas the numbers were 17 and 19, respectively, for ASS, indicating that the NRS can support higher diversity of species than the ASS. During the initial 2 years of restoration, introduced alien shrubs by aerial seeding dominated the vegetation of ASS, although there were indigenous pioneer species in the seed bank which failed to establish in the community. In contrast, indigenous species were dominant components in both the seed bank and the vegetation at the NRS. These findings suggest that the establishment of introduced species might have restricted the germination of certain indigenous pioneer species. Seed bank density of NRS significantly increased with time from 459 ± 76 seeds m−2 at NRS2 to 3,351 ± 694 seeds m−2 at NRS15, showing that the seed bank in degraded grassland is large enough to allow natural restoration. It is not always necessary to actively introduce seeds to enhance vegetation diversity.  相似文献   

10.
Grasslands recovered by sowing low diversity seed mixtures of local provenance are usually managed by mowing. Besides restoration success only a few studies have focused on the direct effects of post-restoration mowing on recovered grassland vegetation. In this study we followed vegetation changes in 13 successfully recovered grasslands in 5 × 5-m-sized sites with continuous and ceased mowing at Hortobágy National Park, East-Hungary. We asked the following questions: (i) What are the effects of cessation of mowing on the vegetation structure and diversity of recovered grasslands? (ii) What are the effects of cessation of mowing on the abundance of sown grasses, target and undesirable species? (iii) Is yearly mowing an appropriate management tool for the maintenance of recovered grasslands? Our results showed that the cessation of mowing caused litter accumulation, while diversity, total vegetation cover and the cover of sown grasses decreased compared to the mown sites. The cover of undesirable perennial species was significantly higher in unmown sites than in mown ones. The species composition of mown sites remained more similar to near-natural grasslands than the unmown ones. Our results suggest that without regular post-restoration mowing the favourable status of recovered grasslands can rapidly decline due to litter accumulation and by the expansion of undesirable species, even in the short-run. We also stress that while yearly mowing is enough to maintain grasslands recovered by low-diversity seed sowing, it cannot be considered to be enough to recover target vegetation composition.  相似文献   

11.
During recent decades, many studies have shown that the successful restoration of species-rich grasslands is often seed-limited because of depleted seed banks and limited seed dispersal in modern fragmented landscapes. In Europe, commercial seed mixtures, which are widely used for restoration measures, mostly consist of species and varieties of non-local provenance. The regional biodiversity of a given landscape, however, can be preserved only when seeds or plants of local provenance are used in restoration projects. Furthermore, the transfer of suitable target species of local provenance can strongly enhance restoration success.We review and evaluate the success of currently used near-natural methods for the introduction of target plant species (e.g. seeding of site-specific seed mixtures, transfer of fresh seed-containing hay, vacuum harvesting, transfer of turves or seed-containing soil) on restoration sites, ranging from dry and mesic meadows to floodplain grasslands and fens. Own data combined with literature findings show species establishment rates during the initial phase as well as the persistence of target species during long-term vegetation development on restoration sites.In conclusion, our review indicates that seed limitation can be overcome successfully by most of the reviewed measures for species introduction. The establishment of species-rich grasslands is most successful when seeds, seed-containing plant material or soil are spread on bare soil of ex-arable fields after tilling or topsoil removal, or on raw soils, e.g. in mined areas. In species-poor grasslands without soil disturbance and on older ex-arable fields with dense weed vegetation, final transfer rates were the lowest. For future restoration projects, suitable measures have to be chosen carefully from case to case as they differ considerably in costs and logistic effort. Long-term prospects for restored grassland are especially good when management can be incorporated in agricultural systems.  相似文献   

12.
Grassland seed banks are traditionally considered a source of new species in degraded communities. However, many recent studies have shown that the potential of the seed bank to restore many communities is rather limited. Two principal reasons for these limitations, loss of species from the seed bank or inability of the species to create any seed bank, are, however, usually not distinguished. This study aims to assess the role of seed bank composition and heterogeneity in the restoration of species-rich plant communities. It was carried out in mountain grasslands in the eastern part of the Krkono?e Mountains, Czech Republic. The composition of vegetation and seed bank were recorded and their relationship was assessedin 1.5m × 1.5 m plots placed in non-degraded and degraded parts of seven grasslands. Vegetation at currently managed sites is not degraded; degraded parts were without management (dominated byHolcus mollis, Bistorta major orRumex alpinus). The degree of heterogeneity of seed bank and vegetation was tested as the relationship between subplot similarity, distance, and degradation stage. Degradation had significant effects on composition of both aboveground vegetation and seed bank and increased heterogeneity both in the vegetation and in the seed bank. Species absent from the vegetation of degraded plots were also absent from the seed bank of both degraded and non-degraded plots, indicating that the absence of species from the seed bank is not due to their loss during the degradation process but rather due to the low number of seeds in the seed bank already in the non-degraded communities. Furthermore, the seed bank of the degraded communities largely results from the present vegetation of these communities. This supports the limited role of the seed bank in these communities. Restoration of these sites is thus impossible unless management will include methods with which seeds will arrive at the degraded sites.  相似文献   

13.
Agricultural intensification typically leads to changes in bird diversity and community composition, with fewer species and foraging guilds present in more intensively managed parts of the landscape. In this study, we compare bird communities in small (2–32 ha) brigalow (Acacia harpophylla) remnants with those in adjacent uncultivated grassland, previously cultivated grassland and current cropland, to determine the contribution of different land uses to bird diversity in the agricultural landscape. Twenty remnant brigalow patches and adjacent agricultural (‘matrix’) areas in southern inland Queensland, Australia were sampled for bird composition and habitat characteristics. The richness, abundance and diversity of birds were all significantly higher in brigalow remnants than in the adjacent matrix of cropping and grassland. Within the matrix, species richness and diversity were higher in uncultivated grasslands than in current cultivation or previously cultivated grasslands. Forty-four percent of bird species were recorded only in brigalow remnants and 78% of species were recorded in brigalow and at least one other land management category. Despite high levels of landscape fragmentation and modification, small patches of remnant brigalow vegetation provide important habitat for a unique and diverse assemblage of native birds. The less intensively managed components of the agricultural matrix also support diverse bird assemblages and thus, may be important for local and regional biodiversity conservation.  相似文献   

14.
Benjamin Krause  Heike Culmsee 《Flora》2013,208(5-6):299-311
There is a growing concern that land use intensification is having negative effects on semi-natural grasslands and that it leads to a general loss of biodiversity among all types of formerly extensively managed grasslands of poor to medium nutrient richness. Since the 1950s, many Central European uplands have been subject to an increase in grassland cover as a result of changes in land use practices. Using such a landscape in Lower Saxony, Germany, as a model region, we assessed environmental factors that control grassland diversity, including plant community composition, species richness and pollination trait composition. In 2007, 189 vegetation sampling sites were randomly distributed among grasslands covering some 394 ha within a 2500 ha study area. Plant communities were classified using TWINSPAN and the effects of environmental factors (soil, topography, current management and habitat continuity) were analysed by canonical correspondence analysis and regression analysis reducing for the effects of spatial autocorrelation by using principal coordinates of neighbour matrices.We found a wide range of six species-poor (<15 plant spp.) to extremely species-rich (>27 spp.) grassland types under mesic to dry site conditions, including sown, Cynosurion, Arrhenatherion and semi-natural grasslands. Grassland community composition was best explained by soil factors and species richness and pollination type composition by combined effects of current management and habitat continuity. During the 1950/60s, the extent of grassland area within the studied landscape rapidly increased to more than double its previous extent, and in 2007, grasslands comprised 16%. Natura 2000 grassland types comprised 1% of the surveyed site and medium-rich, high-nature-value grasslands a further 5%. While the number of wind-pollinated plant species was equal among all grassland types, there was a parallel decline in insect-pollinated plants and overall median species richness in the grassland communities along a gradient of increasing land use intensity (mowing, nutrient supply). Moreover, insect-pollinated plants occurring in intensively managed grasslands were found to additionally have the ability for self-pollination. Species-rich grasslands – including semi-natural grasslands and a semi-improved, species-rich Arrhenatherion community – occurred exclusively on old sites (with >100 years of habitat continuity) that had been used for traditional sheep grazing (environmental contracting). Medium-rich Arrhenatherion grasslands were established primarily on less productive, formerly arable fields (<30 years). We conclude that conservation efforts should focus on extant species-rich grassland types and should aim to implement traditional land use practices such as sheep grazing. Additional restoration efforts should focus on establishing new grasslands on less productive sites in the proximate surroundings of species-rich grasslands to facilitate seed dispersal, but nitrogen deposition should be buffered where appropriate. These measures would enhance the interaction between nature reserves and agricultural grasslands and thus improve the ecological quality of grasslands at the landscape scale.  相似文献   

15.
The substantial increase in elephant populations across many areas in southern Africa over past decades is prompting concerns about the effects on biodiversity. We investigated the outcomes of elephant disturbance on tree-species presence, density, and richness, and on alpha and beta diversity within riparian woodland in Chobe National Park, Botswana. We enumerated all tree species occurring in 32 plots (0.06 ha) along the Chobe riverfront. Plots were stratified by soil type (nutrient-rich alluvium vs. nutrient-poor Kalahari sand covering alluvium) and elephant impact (high vs. low impact on both soil types). We tested four predictions: elephants reduce tree density, richness, and alpha diversity; beta diversity is greater in vegetation subjected to high elephant impact; elephant impact on tree-species composition is greater on nutrient-poor than on nutrient-rich soil; and the loss or decline of abundant tree species on heavily disturbed sites is offset by an increase in abundance of functionally similar species, ones that are minor on lightly disturbed sites. Elephant browsing substantially affected tree-species composition, reducing density, species richness, evenness, and alpha diversity but had no effect on beta diversity. The dominant species on relatively undisturbed areas were partly replaced by functionally similar species on heavily disturbed sites. Soil type influenced species composition on lightly disturbed sites but was less important at higher elephant densities. Our findings are important for areas with extreme dry-season densities of elephants but should not be extrapolated to infer purported effects of elephants on tree diversity at lower densities.  相似文献   

16.
Fusarium species were isolated from plant debris in soil samples collected from cultivated maize fields and from undisturbed grasslands in two areas of the Transkei region. A total of 1205 Fusarium isolates were recovered from 27 soil samples. Fifteen Fusarium species were recovered from plant debris from Bizana soils and 13 Fusarium species from plant debris from Centane soils. The two dominant Fusarium species in both areas were F. oxysporum and F. equiseti. Very few isolates of F. moniliforme and F. subglutinans were recovered, but both of these species had significantly higher relative densities in cultivated soils than in undisturbed soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Grassland degradation is widespread and severe on the Tibet Plateau. To explore management approaches for sustainable development of degraded and restored ecosystems, we studied the effect of land degradation on species composition, species diversity, and vegetation productivity, and examined the relative influence of various rehabilitation practices (two seeding treatments and a non-seeded natural recovery treatment) on community structure and vegetation productivity in early secondary succession. The results showed: (1) All sedge and grass species of the natural steppe meadow had disappeared from the severely degraded land. The above-ground and root biomass of severely degraded land were only 38 and 14.7%, respectively, of those of the control. So, the original ecosystem has been dramatically altered by land degradation on alpine steppe meadow. (2) Seeding measures may promote above-ground biomass, particularly grass biomass, and ground cover. Except for the grasses seeded, however, other grass and sedge species did not occur after seeding treatments in the sixth year of seeding. Establishment of grasses during natural recovery treatment progressed slowly compared with during seeding treatments. Many annual forbs invaded and established during the 6 years of natural recovery. In addition, there was greater diversity after natural recovery treatment than after seeding treatments. (3) The above-ground biomass after seeding treatment and natural recovery treatment were 114 and 55%, respectively, of that of the control. No significant differences in root biomass occurred among the natural recovery and seeded treatments. Root biomass after rehabilitation treatment was 23–31% that of the control.  相似文献   

19.
Grasslands in southeastern South America have been extensively converted to various land uses such as agriculture, threatening regional biodiversity. Active restoration has been viewed as a management alternative for recovery of degraded areas worldwide, although most studies are conducted in forests and none has evaluated the effect of active restoration of grasslands in southeastern South America. From 2015 through 2017 we monitored a federally owned tract of grassland from the beginning of the active‐restoration process. We compared the bird community in this active‐restoration area (AR) with a reference area (NG) in Pampa grasslands in southern Brazil. We sampled birds by point counts and surveyed vegetation structure in plots. Over the 3 years of active restoration, bird species richness and abundance were higher in AR (30 species, 171 individuals) than NG (22 species, 154 individuals). The species composition also differed between the two habitats. Grassland bird species were present in both AR and NG. The vegetation structure differed between AR and NG in five attributes: height, short and tall grasses, herbs, and shrubs. Since it has been found that active restoration is useful in promoting species diversity, we encourage studies of the use of long‐term restoration efforts. Our study, even on a local scale, showed a rapid recovery of the bird community in the active‐restoration compared to native grassland, and suggests the potential for recovery of the degraded grasslands of the Brazilian Pampa biome.  相似文献   

20.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号