首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferative vitreoretinopathy (PVR) is a severe ocular disease which results in complex retinal detachment and irreversible vision loss. The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is considered to be critical in the pathogenesis of PVR. In this study, we focused on the potential impact of keratin 8 (KRT8) phosphorylation and autophagy on TGF-β2–induced EMT of RPE cells and explored the relationship between them. Using immunofluorescence and Western blot analysis, the co-localization of KRT8 and autophagy marker, as well as the abundance of phosphorylated KRT8 (p-KRT8) expression, was observed within subretinal and epiretinal membranes from PVR patients. Moreover, during TGF-β2–induced EMT process, we found that p-KRT8 was enhanced in RPE cells, which accompanied by an increase in autophagic flux. Inhibition of autophagy with pharmacological inhibitors or specific siRNAs was associated with a reduction in cell migration and the synthesis of several EMT markers. In the meantime, we demonstrated that p-KRT8 was correlated with the autophagy progression during the EMT of RPE cells. Knockdown the expression or mutagenesis of the critical phosphorylated site of KRT8 would induce autophagy impairment, through affecting the fusion of autophagosomes and lysosomes. Therefore, this study may provide a new insight into the pathogenesis of PVR and suggests the potential therapeutic value of p-KRT8 in the prevention and treatment of PVR.  相似文献   

2.
Epidemiological evidence suggests that moderate wine consumption and antioxidant-rich diets may protect against age-related macular degeneration (AMD), the leading cause of vision loss among the elderly. Development of AMD and other retinal diseases, such as proliferative vitreoretinopathy (PVR), is associated with oxidative stress in the retinal pigment epithelium (RPE), a cell layer responsible for maintaining the health of the retina by providing structural and nutritional support. We hypothesize that resveratrol, a red wine polyphenol, may be responsible, in part, for the health benefits of moderate red wine consumption on retinal disease. To test this hypothesis, the antioxidant and antiproliferative effects of resveratrol were examined in a human RPE cell line (designated ARPE-19). Cell proliferation was determined using the bromodeoxyuridine (BrdU) assay, intracellular oxidation was assessed by dichlorofluorescein fluorescence, and activation of the mitogen-activated protein kinase (MAPK) cascade was measured by immunoblotting. Treatment with 50 and 100 micromol/L resveratrol significantly reduced proliferation of RPE cells by 10% and 25%, respectively (P<0.05). This reduction in proliferation was not associated with resveratrol-induced cytotoxicity. Resveratrol (100 micromol/L) inhibited basal and H2O2-induced intracellular oxidation and protected RPE cells from H2O2-induced cell death. The observed reduction in cell proliferation was associated with inhibition of mitogen activated protein kinase/ERK (MEK) and extracellular signal-regulated kinase (ERK 1/2) activities at concentrations of resveratrol as low as 5 micromol/L. These results suggest that resveratrol can reduce oxidative stress and hyperproliferation of the RPE.  相似文献   

3.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

4.
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.  相似文献   

5.
6.
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.  相似文献   

7.
Tsao YP  Ho TC  Chen SL  Cheng HC 《Life sciences》2006,79(6):545-550
Oxidative stress-induced retinal pigment epithelial (RPE) cell death is involved in the pathogenesis of age-related macular degeneration (AMD). Pigment epithelium-derived factor (PEDF) is an anti-angiogenic/neurotropic dual functional factor, and recently it was also shown to mediate anti-oxidative action. In the present study, the influence of PEDF in hydrogen peroxide (H(2)O(2))-induced RPE cell death was investigated using nontransformed human RPE cell line (ARPE-19). The recombinant PEDF was purified from E. coli. The MTT cell viability assay showed that PEDF rescued ARPE-19 from H(2)O(2)-induced cell death in a dose- and time-dependent manner. Western blot analysis revealed that PEDF stimulated the extracellular signal-regulated kinases (ERK1/2) phosphorylation. The PEDF cytoprotective effect was significantly attenuated by the ERK1/2 inhibitor PD98059. In this study, we demonstrate that PEDF induces ERK1/2 phosphorylation and we further suggest that the ERK signal cascade contributes to RPE cell's cytoprotection against oxidative stress.  相似文献   

8.
Retinal pigment epithelium (RPE) plays a major role in the maintenance of photoreceptors, and degeneration of RPE results in the development of age-related macular degeneration (AMD). Accumulation of intracellular protein aggregates, increased oxidative stress, and chronic inflammation are all factors damaging the functionality of aged RPE cells. Here, we report that inhibition of proteasomal degradation with MG-132 and autophagy with bafilomycin A1 resulted in the release of IL-1β but not that of IL-18 in human ARPE-19 cells. NLRP3 receptor became upregulated, and caspase-1, the functional component of an inflammasome complex, was activated. In addition to accumulating intracellular protein aggregates, inhibition of degradation systems induced oxidative stress which was demonstrated by elevated amounts of intracellular 4-hydroxynonenal (HNE)-protein adducts. Along with IL-1β, exposure to MG-132 and bafilomycin A1 resulted in the secretion of IL-8. A low concentration (1 pg/ml) of IL-1β was capable of triggering significant IL-8 production which also became attenuated by treatment with a specific caspase-1 inhibitor. These results suggest that decline in intracellular degradation systems results not only in increased amounts of intracellular protein aggregates and oxidative stress but also in the activation of NLRP3 inflammasomes, arisen as a result of elevated production of biologically active IL-1β.  相似文献   

9.
10.
Retinal pigment epithelium (RPE) plays a critical role in vertebrate vision by providing functional and structural support to the retina. Degeneration of RPE by cumulative oxidative stresses or acute injury frequently results in retinal degenerative diseases, notably age-related macular degeneration (AMD). Moreover, it has been shown that phosphorylation-mediated inactivation of PTEN (phosphatase and tensin homolog) in RPE is closely linked to AMD-like retinal degeneration in mice [1]. In this study, we used AMD mouse models, in which chemokine (C–C motif) ligand 2 (Ccl2) or chemokine (C–C motif) receptor 2 (Ccr2) were genetically ablated, to examine mechanisms linking reactive oxygen species (ROS) to phosphorylation/inactivation of PTEN in RPE. We found that ROS levels were increased in these RPE cells in association with phosphorylation/inactivation of PTEN. Both PTEN phosphorylation/inactivation and consequent Akt activation in the RPE of AMD model mice were inhibited by antioxidant treatment, indicating a functional role for elevated intracellular ROS. We further discovered that PTEN phosphorylation in oxidatively stressed RPE was repressed by a phosphoinositide 3-kinase (PI3K) inhibitor, but not by an Akt inhibitor. Taken together, these results suggest that ROS-activated PI3K potentiates AMD-related RPE pathogenesis through phosphorylation/inactivation of PTEN.  相似文献   

11.
12.
Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry AMD.  相似文献   

13.
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.  相似文献   

14.
Oxidative stress and inflammation are implicated in the pathogenesis of many age-related diseases. Stress-induced overproduction of inflammatory cytokines, such as interleukin-8 (IL-8), is one of the early events of inflammation. The objective of this study was to elucidate mechanistic links between oxidative stress and overproduction of IL-8 in retinal pigment epithelial (RPE) cells. We found that exposure of RPE cells to H(2)O(2), paraquat, or A2E-mediated photooxidation resulted in increased expression and secretion of IL-8. All of these oxidative stressors also inactivated the proteasome in RPE cells. In contrast, tert-butylhydroperoxide (TBH), a lipophilic oxidant that did not stimulate IL-8 production, also did not inactivate the proteasome. Moreover, prolonged treatment of RPE cells with proteasome-specific inhibitors recapitulated the stimulation of IL-8 production. These data suggest that oxidative inactivation of the proteasome is a potential mechanistic link between oxidative stress and up-regulation of the proinflammatory IL-8. The downstream signaling pathways that govern the production of IL-8 include NF-kappaB and p38 MAPK. Proteasome inhibition both attenuated the activation and delayed the turnoff of NF-kappaB, resulting in biphasic effects on the production of IL-8. Prolonged proteasome inhibition (>2 h) resulted in activation of p38 MAPK via activation of MKK3/6 and increased the production of IL-8. Chemically inhibiting the p38 MAPK blocked the proteasome inhibition-induced up-regulation of IL-8. Together, these data indicate that oxidative inactivation of the proteasome and the related activation of the p38 MAPK pathway provide a potential link between oxidative stress and overproduction of proinflammatory cytokines, such as IL-8.  相似文献   

15.
Oxidative stress has a key role in the pathogenesis of age-related macular degeneration (AMD). Cigarette smoking is known to the one of the main risk factors of AMD through oxidative stress-mediated endoplasmic reticulum (ER) stress and lipid accumulation in human retinal pigment epithelium (RPE) cells. A number of studies have investigated the benefits of antioxidants in the AMD. However, previous studies have not shown that efficacy of antioxidant in the treatment of AMD. Recent studies demonstrated that morin hydrate (MH) has antioxidant properties, anti-inflammatory, and antiapoptosis effects, however, the protective effects of MH against cigarette smoke extract (CSE)-induced AMD have not been studied in detail. We tested the potential effect of MH against the CSE-induced lipid accumulation in RPE cells and mice RPE layer. Herein, we observed that expose of RPE cells to CSE reduced cell viability, increased the lipid accumulation, ER stress, and oxidative stress. Concomitantly, CSE treatment to mice induced AMD associated histopathological changes, lipid accumulation, ER stress and oxidative stress in RPE layer. MH significantly attenuated cytotoxicity, lipid accumulation, ER stress, and oxidative stress via activated AMPK-Nrf2 signaling pathway in RPE cells and mice RPE layer. In addition, AMPK inhibition reversed MH-induced RPE cell protection against CSE. Thus, we conclude that MH protects RPE cells from CSE through reduced oxidative stress, ER stress, and lipid accumulation via activated AMPK-Nrf2-HO-1 signaling pathway. These findings suggest that MH treatment may be exploited in effective strategy against CSE-induced AMD.  相似文献   

16.
17.
Age-related macular degeneration (AMD) is a complex, degenerative and progressive eye disease that usually does not lead to complete blindness, but can result in severe loss of central vision. Risk factors for AMD include age, genetics, diet, smoking, oxidative stress and many cardiovascular-associated risk factors. Autophagy is a cellular housekeeping process that removes damaged organelles and protein aggregates, whereas heterophagy, in the case of the retinal pigment epithelium (RPE), is the phagocytosis of exogenous photoreceptor outer segments. Numerous studies have demonstrated that both autophagy and heterophagy are highly active in the RPE. To date, there is increasing evidence that constant oxidative stress impairs autophagy and heterophagy, as well as increases protein aggregation and causes inflammasome activation leading to the pathological phenotype of AMD. This review ties together these crucial pathological topics and reflects upon autophagy as a potential therapeutic target in AMD.  相似文献   

18.
Age related macular degeneration (AMD) is a progressive, neurodegenerative disorder that leads to the severe loss of central vision in elderlies. The health of retinal pigment epithelial (RPE) cells is critical for the onset of AMD. Chronic oxidative stress along with loss of lysosomal activity is a major cause for RPE cell death during AMD. Hence, development of a molecule for targeted lysosomal delivery of therapeutic protein/drugs in RPE cells is important to prevent RPE cell death during AMD. Using human RPE cell line (ARPE-19 cells) as a study model, we confirmed that hydrogen peroxide (H2O2) induced oxidative stress results in CD44 cell surface receptor overexpression in RPE cells; hence, an important target for specific delivery to RPE cells during oxidative stress. We also demonstrate that the known nucleic acid CD44 aptamer - conjugated with a fluorescent probe (FITC) - is delivered into the lysosomes of CD44 expressing ARPE-19 cells. Hence, as a proof of concept, we demonstrate that CD44 aptamer may be used for lysosomal delivery of cargo to RPE cells under oxidative stress, similar to AMD condition. Since oxidative stress may induce wet and dry AMD, both, along with proliferative vitreoretinopathy, CD44 aptamer may be applicable as a carrier for targeted lysosomal delivery of therapeutic cargoes in ocular diseases showing oxidative stress in RPE cells.  相似文献   

19.
Complement activation, oxidative damage, and activation of the NLRP3 inflammasome have been implicated in retinal pigment epithelium (RPE) pathology in age-related macular degeneration (AMD). Following priming of RPE cells, the NLRP3 inflammasome can be activated by various stimuli such as lipofuscin-mediated photooxidative damage to lysosomal membranes. We investigated whether products of complement activation are capable of providing the priming signal for inflammasome activation in RPE cells. We found that incubation of primary human RPE cells and ARPE-19 cells with complement-competent human serum resulted in up-regulation of C5a receptor, but not C3a receptor. Furthermore, human serum induced expression of pro-IL-1β and enabled IL-1β secretion in response to lipofuscin phototoxicity, thus indicating inflammasome priming. Complement heat-inactivation, C5 depletion, and C5a receptor inhibition suppressed the priming effect of human serum whereas recombinant C5a likewise induced priming. Conditioned medium of inflammasome-activated RPE cells provided an additional priming effect that was mediated by the IL-1 receptor. These results identify complement activation product C5a as a priming signal for RPE cells that allows for subsequent inflammasome activation by stimuli such as lipofuscin-mediated photooxidative damage. This molecular pathway provides a functional link between key factors of AMD pathogenesis including lipofuscin accumulation, photooxidative damage, complement activation, and RPE degeneration and may provide novel therapeutic targets in this disease.  相似文献   

20.
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies.In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号