首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
F Daldal  M K Tokito  E Davidson    M Faham 《The EMBO journal》1989,8(13):3951-3961
Several spontaneous mutants of the photosynthetic bacterium Rhodobacter capsulatus resistant to myxothiazol, stigmatellin and mucidin--inhibitors of the ubiquinol: cytochrome c oxidoreductase (cyt bc1 complex)--were isolated. They were grouped into eight different classes based on their genetic location, growth properties and inhibitor cross-resistance. The petABC (fbcFBC) cluster that encodes the structural genes for the Rieske FeS protein, cyt b and cyt c1 subunits of the cyt bc1 complex was cloned out of the representative isolates and the molecular basis of inhibitor-resistance was determined by DNA sequencing. These data indicated that while one group of mutations was located outside the petABC(fbcFBC) cluster, the remainder were single base pair changes in codons corresponding to phylogenetically conserved amino acid residues of cyt b. Of these substitutions, F144S conferred resistance to myxothiazol, T163A and V333A to stigmatellin, L106P and G152S to myxothiazol + mucidin and M140I and F144L to myxothiazol + stigmatellin. In addition, a mutation (aer126) which specifically impairs the quinol oxidase (Qz) activity of the cyt bc1 complex of a non-photosynthetic mutant (R126) was identified to be a glycine to an aspartic acid replacement at position 158 of cyt b. Six of these mutations were found between amino acid residues 140 and 163, in a region linking the putative third and fourth transmembrane helices of cyt b. The non-random clustering of several inhibitor-resistance mutations around the non-functional aer126 mutation suggests that this region may be involved in the formation of the Qz inhibitor binding/quinol oxidation domain(s) of the cyt bc1 complex. Of the two remaining mutations, the V333A replacement conferred resistance to stigmatellin exclusively and was located in another region toward the C terminus of cyt b. The L106P substitution, on the other hand, was situated in the transmembrane helix II that carries two conserved histidine residues (positions 97 and 111 in R. capsulatus) considered to be the axial ligands for the heme groups of cyt b. The structural and functional roles of the amino acid residues involved in the acquisition of Qz inhibitor resistance are discussed in terms of the primary structure of cyt b and in relation to the natural inhibitor-resistance of various phylogenetically related cyt bc/bf complexes.  相似文献   

2.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.  相似文献   

3.
To determine the effect of the redox state of the Rieske protein on ligand binding to the quinol oxidation site of the bc(1) complex, we measured the binding rate constants (k(1)) for stigmatellin and myxothiazol, at different concentrations of decylbenzoquinone or decylbenzoquinol, in the bovine bc(1) complex with the Rieske protein in the oxidized or reduced state. Stigmatellin and myxothiazol bound tightly and competitively with respect to quinone or quinol, independently of the redox state of the Rieske protein. In the oxidized bc(1) complex, the k(1) values for stigmatellin ( approximately 2.6 x 10(6) m(-1)s(-1)) and myxothiazol ( approximately 8 x 10(5) m(-1)s(-1)), and the dissociation constant (K(d)) for quinone, were similar between pH 6.5 and 9, indicating that ligand binding is independent of the protonation state of histidine 161 of the Rieske protein (pK(a) approximately 7.6). Reduction of the Rieske protein increased the k(1) value for stigmatellin and decreased the K(d) value for quinone by 50%, without modifying the k(1) for myxothiazol. These results indicate that reduction of the Rieske protein and protonation of histidine 161 do not induce a strong stabilization of ligand binding to the quinol oxidation site, as assumed in models that propose the existence of a highly stabilized semiquinone as a reaction intermediate during quinol oxidation.  相似文献   

4.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.  相似文献   

5.
Raul Covian 《BBA》2008,1777(9):1079-1091
The dimeric cytochrome bc1 complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc1 complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.  相似文献   

6.
We have investigated the mechanism responsible for half-of-the-sites activity in the dimeric cytochrome bc(1) complex from Paracoccus denitrificans by characterizing the kinetics of inhibitor binding to the ubiquinol oxidation site at center P. Both myxothiazol and stigmatellin induced a 2-3 nm shift of the visible absorbance spectrum of the b(L) heme. The shift generated by myxothiazol was symmetric, with monophasic kinetics that indicate equal binding of this inhibitor to both center P sites. In contrast, stigmatellin generated an asymmetric shift in the b(L) spectrum, with biphasic kinetics in which each phase contributed approximately half of the total magnitude of the spectral change. The faster binding phase corresponded to a more symmetrical shift of the b(L) spectrum relative to the slower binding phase, indicating that approximately half of the center P sites bound stigmatellin more slowly and in a different position relative to the b(L) heme, generating a different effect on its electronic environment. Significantly, the slow stigmatellin binding phase was lost as the inhibitor concentration was increased. This implies that a conformational change is transmitted from one center P site in the dimer to the other upon stigmatellin binding to one monomer, rendering the second site less accessible to the inhibitor. Because the position that stigmatellin occupies at center P is considered to be analogous to that of the quinol substrate at the moment of electron transfer, these results indicate that the productive enzyme-substrate configuration is prevented from occurring in both monomers simultaneously.  相似文献   

7.
D E Robertson  F Daldal  P L Dutton 《Biochemistry》1990,29(51):11249-11260
Seven single-site mutants in six residues of the cyt b polypeptide of Rhodobacter capsulatus selected for resistance to the Qo site inhibitors stigmatellin, myxothiazol, or mucidin [Daldal, F., Tokito, M.K., Davidson, E., & Faham, M. (1989) EMBO J. 8, 3951-3961] have been characterized by using optical and EPR spectroscopy and single-turnover kinetic analysis. The strains were compared with wild-type strain MT1131 and with the Ps- strain R126 (G158D), which is dysfunctional in its Qo site [Robertson, D.E., Davidson, E., Prince, R.C., van den Berg, W.H., Marrs, B.L., & Dutton, P.L. (1986) J. Biol. Chem. 261, 584-591]. Mutants selected for stigmatellin resistance induced a weakening in the binding of the inhibitor without discernible loss of ubiquinone(Q)/ubiquinol(QH2) binding affinity to the Qo site or kinetic impairment to catalysis. Mutants selected for myxothiazol or mucidin resistance, inducing weakening of inhibitor binding, all displayed impaired rates of Qo site catalysis: The most severe cases (F144L, F144S) displayed loss of affinity for Q, and evidence suggests that parallel loss of affinity for the substrate QH2 was incurred in these strains. The results provide a view of the nature of the interaction of Q and QH2 of the Qpool with the Qo site. Consideration of the mutational substitutions and their structural positions along with comparisons with the QA and QB sites of the photosynthetic reaction center suggests a model for the structure of the Qo site.  相似文献   

8.
Cytochrome bd is a terminal quinol oxidase in Escherichia coli. Mitochondrial respiration is inhibited at cytochrome bc1 (complex III) by myxothiazol. Mixing purified cytochrome bd oxidase with myxothiazol-inhibited bovine heart submitochondrial particles (SMP) restores up to 50% of the original rotenone-sensitive NADH oxidase and succinate oxidase activities in the absence of exogenous ubiquinone analogs. Complex III bypassed respiration and is saturated at amounts of added cytochrome bd similar to that of other natural respiratory components in SMP. The cytochrome bd tightly binds to the mitochondrial membrane and operates as an intrinsic component of the chimeric respiratory chain.  相似文献   

9.
Hydroxy-naphthoquinones are competitive inhibitors of the cytochrome bc1 complex that bind to the ubiquinol oxidation site between cytochrome b and the iron-sulfur protein and presumably mimic a transition state in the ubiquinol oxidation reaction catalyzed by the enzyme. The parameters that affect efficacy of binding of these inhibitors to the bc1 complex are not well understood. Atovaquone®, a hydroxy-naphthoquinone, has been used therapeutically to treat Pneumocystis carinii and Plasmodium infections. As the pathogens have developed resistance to this drug, it is important to understand the molecular basis of the drug resistance and to develop new drugs that can circumvent the drug resistance. We previously developed the yeast and bovine bc1 complexes as surrogates to model the interaction of atovaquone with the bc1 complexes of the target pathogens and human host. As a first step to identify new cytochrome bc1 complex inhibitors with therapeutic potential and to better understand the determinants of inhibitor binding, we have screened a library of 2-hydroxy-naphthoquinones with aromatic, cyclic, and non-cyclic alkyl side-chain substitutions at carbon-3 on the hydroxy-quinone ring. We found a group of compounds with alkyl side-chains that effectively inhibit the yeast bc1 complex. Molecular modeling of these into the crystal structure of the yeast cytochrome bc1 complex provides structural and quantitative explanations for their binding efficacy to the target enzyme. In addition we also identified a 2-hydroxy-naphthoquinone with a branched side-chain that has potential for development as an anti-fungal and anti-parasitic therapeutic.  相似文献   

10.
The new antibiotic stigmatellin, obtained from the myxobacterium Stigmatella aurantiaca, was found to block the electron flow in the respiratory chain of bovine heart submitochondrial particles at the site of the cytochrome b-c1 segment. Its inhibitory potency was identical with that of antimycin and myxothiazol, and like these antibiotics, stigmatellin caused a shift in the spectrum of reduced cytochrome b. Difference spectroscopic studies with the three inhibitors in various combinations indicated that the binding site of stigmatellin was different from that of antimycin, but more or less identical with that of myxothiazol. Experiments with 14 synthesized derivatives of stigmatellin showed that good inhibitory activity can be expected only if the side chain was kept relatively lipophilic, and the keto and the hydroxy groups of the chromone system were left intact.  相似文献   

11.
Photosynthetic bacteria offer excellent experimental opportunities to explore both the structure and function of the ubiquinol-cytochromec oxidoreductase (bc 1 complex). In bothRhodobacter sphaeroides andRhodobacter capsulatus, thebc 1 complex functions in both the aerobic respiratory chain and as an essential component of the photosynthetic electron transport chain. Because thebc 1 complex in these organisms can be functionally coupled to the photosynthetic reaction center, flash photolysis can be used to study electron flow through the enzyme and to examine the effects of various amino acid substitutions. During the past several years, numerous mutations have been generated in the cytochromeb subunit, in the Rieske iron-sulfur subunit, and in the cytochromec 1 subunit. Both site-directed and random mutagenesis procedures have been utilized. Studies of these mutations have identified amino acid residues that are metal ligands, as well as those residues that are at or near either the quinol oxidase (Qo) site or the quinol reductase (Qi) site. The postulate that these two Q-sites are located on opposite sides of the membrane is supported by these studies. Current research is directed at exploring the details of the catalytic mechanism, the nature of the subunit interactions, and the assembly of this enzyme.  相似文献   

12.
Biochemical analyses of Rubrivivax gelatinosus membranes have revealed that the cytochrome bc(1) complex is highly resistant to classical inhibitors including myxothiazol, stigmatellin, and antimycin. This is the first report of a strain exhibiting resistance to inhibitors of both catalytic Q(0) and Q(i) sites. Because the resistance to cytochrome bc(1) inhibitors is primarily related to the cytochrome b primary structure, the petABC operon encoding the subunits of the cytochrome bc(1) complex of Rubrivivax gelatinosus was sequenced. In addition to homologies to the corresponding proteins from other organisms, the deduced amino acid sequence of the cytochrome b polypeptide shows (i) an E303V substitution in the highly conserved PEWY loop involved in quinol/stigmatellin binding, (ii) other substitutions that could be involved in resistance to cytochrome bc(1) inhibitors, and (iii) 14 residues instead of 13 between the histidines in helix IV that likely serve as the second axial ligand to the b(H) and b(L) hemes, respectively. These characteristics imply different functional properties of the cytochrome bc(1) complex of this bacterium. The consequences of these structural features for the resistance to inhibitors and for the properties of R. gelatinosus cytochrome bc(1) are discussed with reference to the structure and function of the cytochrome bc(1) complexes from other organisms.  相似文献   

13.
The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  相似文献   

14.
The redox potential of the Rieske Fe-S protein has been investigated using circular dichroism (CD)-spectroscopy. The CD features characteristic of the purified bc1 complex and membranes of Rhodobacter sphaeroides were found in the region between 450 and 550 nm. The difference between reduced and oxidized CD-spectra shows a negative band at about 500 nm with a half of width 30 nm that corresponds to the specific dichroic absorption of the reduced Rieske protein (Fee, J.A. et al. (1984) J. Biol. Chem. 259, 124–133; Degli Esposti, M. et al. (1987) Biochem. J. 241, 285–290; Rich, P.R. and Wiggins, T.E. (1992) Biochem. Soc. Trans. 20, 241S). It was found that the redox potential at pH 7.0 for the Rieske center in the isolated bc1 complex and in chromatophore membranes from the R-26 strain of Rb. sphaeroides is 300±5 mV. In chromatophores from the BC17C strain of Rb. sphaeroides, the Em value measured for the Rieske iron-sulfur protein (ISP) was higher (315±5 mV), but the presence of carotenoids made measurement less accurate. The Em varied with pH in the range above pH 7, and the pH dependence was well fit either by one pK at 7.5 in the range of titration, or by two pK values, pK1=7.6 and pK2=9.8. Similar titrations and pK values were found for the Rieske Fe-S protein in the isolated bc1 complex and membranes from the R-26 strain of Rb. sphaeroides. The results are discussed in the context of the mechanism of quinol oxidation by the bc1 complex, and the role of the iron sulfur protein in formation of a reaction complex at the Qo-site.  相似文献   

15.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

16.
We have measured the rates of superoxide anion generation by cytochrome bc1 complexes isolated from bovine heart and yeast mitochondria and by cytochrome bc1 complexes from yeast mutants in which the midpoint potentials of the cytochrome b hemes and the Rieske iron-sulfur cluster were altered by mutations in those proteins. With all of the bc1 complexes the rate of superoxide anion production was greatest in the absence of bc1 inhibitor and ranged from 3% to 5% of the rate of cytochrome c reduction. Stigmatellin, an inhibitor that binds to the ubiquinol oxidation site in the bc1 complex, eliminated superoxide anion formation, while myxothiazol, another inhibitor of ubiquinol oxidation, allowed superoxide anion formation at a low rate. Antimycin, an inhibitor that binds to the ubiquinone reduction site in the bc1 complex, also allowed superoxide anion formation and at a slightly greater rate than myxothiazol. Changes in the midpoint potentials of the cytochrome b hemes had no significant effect on the rate of cytochrome c reduction and only a small effect on the rate of superoxide anion formation. A mutation in the Rieske iron-sulfur protein that lowers its midpoint potential from +285 to +220 mV caused the rate of superoxide anion to decline in parallel with a decline in cytochrome c reductase activity. These results indicate that superoxide anion is formed by similar mechanisms in mammalian and yeast bc1 complexes. The results also show that changes in the midpoint potentials of the redox components that accept electrons during ubiquinol oxidation have only small effects on the formation of superoxide anion, except to the extent that they affect the activity of the enzyme.  相似文献   

17.
He-Wen Ma 《BBA》2008,1777(3):317-326
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with β-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

18.
The effect of different anions on the steady-state proton translocation in bovine bc 1 complex reconstituted in liposomes was studied. The H+/e ratio for vectorial proton translocation is at the steady state definitely lower than that measured at level flow, (0.3 vs. 1.0). The presence of azide or arachidonate at micro- and submicromolar concentrations, respectively, gave a substantial reactivation of the proton pumping activity at the steady state, without any appreciable effect on respiration-dependent transmembrane pH difference. Addition of azide to turning-over bc 1 vesicles also caused a transition of b cytochromes toward oxidation. The results are discussed in terms of possible involvement of an acidic residue in the protonation of the semiquinone/quinol couple at the N side of the membrane.  相似文献   

19.
The organisation and function of electron transport pathways in Paracoccus denitrificans has been studied with both inhibitors and electrode probes for O2 or N2O respiration and membrane potential. Myxothiazol completely inhibits electron flow through the cytochrome bc1 region of the electron transport chain, as judged by its effect on nitrous oxide respiration. Electron flow to oxygen via the cytochrome o oxidase was shown to be insensitive to myxothiazol in a mutant, HUUG 25, that lacks cytochrome c and in which the aa3 oxidase is therefore inactive. Myxothiazol did not inhibit nitrate reduction. It is concluded that myxothiazol is a specific inhibitor of electron flow through the cytochrome bc1 region and more potent than antimycin which does not give complete inhibition.As neither antimycin nor myxothiazol, nor a combination of the two, inhibits electron transport to either nitrate reductase or cytochrome o it is concluded that electron transport pathways to these enzymes do not involve the cytochrome bc1 region but rather branch at the level of ubiquinone. Although the cytochrome o pathway branches at ubiquinone, it is associated with the generation of a protonmotive force; this is shown by measurements of membrane potential in vesicle preparations from the mutant HUUG 25.In contrast to antimycin and myxothiazol, the ubiquinone analogues 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-undecyl-3-hydroxy-1,4-naphthoquinone (UHNQ) inhibit electron flow through both the cytochrome bc1 complex and the cytochrome o pathway, although a higher titre is required in the latter case. These two inhibitors were without effect on the nitrate reductase pathway. Thus myxothiazol is the inhibitor of choice for selective and complete inhibition of cytochrome bc1.Recently published schemes for electron transport in P. denitrificans are analysed.Non standard abbreviations S-13 2,5-dichloro-3-t-butyl-4-nitrososalicylanilide - UHNQ 2-n-undecyl-3-hydroxy-1,4-naphthoquinone - UHDBT 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole  相似文献   

20.
Pierre Joliot  Anne Joliot 《BBA》2005,1706(3):204-214
The kinetics of reoxidation of the primary acceptor Qa has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 °C, about half of Qa is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Qo of the cytochrome bc1 complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Qa oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc1 complex, which allows a fast transfer of quinone formed at the level of cyt bc1 complex to the RCs. In agreement with this model, the fast phase of Qa reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc1. The PufX-deleted mutant displays only the slowest phase of Qa oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc1 and RCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号