首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary effects of Southern Hemisphere Pleistocene oceanographic conditions — marked by fluctuations in sea levels and water temperatures, and redirected currents — are poorly understood. The southeastern tip of Australia presents an intriguing model system for studying the biological impacts of palaeoceanography. In particular, contrasting oceanographic conditions that existed on eastern vs. western sides of the Bassian Isthmus during Pleistocene glacial periods allow for natural comparisons between putative refugial vs. re-invading populations. Whereas many western Tasmanian marine taxa were likely eliminated by cold subantarctic water during the last glacial period, eastern Tasmanian populations would have persisted in relatively warm temperatures mediated by the ongoing influence of the East Australian Current (EAC). Here we test for the effects of contrasting palaeoceanographic conditions on endemic bull kelp, Durvillaea potatorum , using DNA sequence analysis (COI; rbc L) of more than 100 individuals from 14 localities in southeastern Australia. Phylogenetic reconstructions reveal a deep (maximum divergence 4.7%) genetic split within D. potatorum , corresponding to the 'eastern' and 'western' geographical regions delimited by the Bassian Isthmus, a vicariant barrier during low Pleistocene sea levels. Concordant with the western region's cold glacial conditions, samples from western Tasmania and western Victoria are genetically monomorphic, suggesting postglacial expansion from a mainland refugium. Eastern samples, in contrast, comprise distinct regional haplogroups, suggesting the species persisted in eastern Tasmania throughout recent glacial periods. The deep east–west divergence seems consistent with earlier reports of morphological differences between 'western' and 'eastern' D. potatorum , and it seems likely that these forms represent reproductively isolated species.  相似文献   

2.
Closely related species, Penaeus merguiensis and Penaeus silasi from Thai waters, were genetically examined using variation observed in 558 base pairs (bp) of sequence from cytochrome oxidase subunit I (COI) gene of mtDNA. The sequence divergences of COI between P. merguiensis and other Penaeus species were 5.76-6.15% (P. silasi), 13.17-13.97% (Penaeus indicus), 16.43% (Penaeus vannamei), 16.63% (Penaeus monodon), and 18.37% (Penaeus japonicus). From the alignment reported that there were four clades on phylogenetic tree, the distinction of the two monophyletic clades was referred as P. merguiensis, one monophyletic clade within P. silasi and P. indicus. These results point toward the possibility of P. merguiensis being a complex of two cryptic species or a single species with strong phylogeographic subdivision.  相似文献   

3.
Aim Phylogeography provides a framework to explain and integrate patterns of marine biodiversity at infra‐ and supra‐specific levels. As originally expounded, the phylogeographic hypotheses are generalities that have limited discriminatory power; the goal of this study is to generate and test specific instances of the hypotheses, thereby better elucidating both local patterns of evolution and the conditions under which the generalities do or do not apply. Location Coastal south‐east Australia (New South Wales, Tasmania and Victoria), and south‐west North America (California and Baja California). Methods Phylogeographic hypotheses specific to coastal south‐east Australia were generated a priori, principally from existing detailed distributional analyses of echinoderms and decapods. The hypotheses are tested using mitochondrial cytochrome c oxidase subunit I (COI) and nuclear internal transcribed spacer 1 (ITS1) DNA sequence data describing population variation in the jellyfish Catostylus mosaicus, integrated with comparable data from the literature. Results Mitochondrial COI distinguished two reciprocally monophyletic clades of C. mosaicus (mean ± SD: 3.61 ± 0.40% pairwise sequence divergence) that were also differentiated by ITS1 haplotype frequency differences; the boundary between the clades was geographically proximate to a provincial zoogeographic boundary in the vicinity of Bass Strait. There was also limited evidence of another genetic inhomogeneity, of considerably smaller magnitude, in close proximity to a second hypothesized zoogeographic discontinuity near Sydney. Other coastal marine species also show genetic divergences in the vicinity of Bass Strait, although they are not closely concordant with each other or with reported biogeographic discontinuities in the region, being up to several hundreds of kilometres apart. None of the species studied to date show a strong phylogeographic discontinuity across the biogeographic transition zone near Sydney. Main conclusions Patterns of evolution in the Bass Strait and coastal New South Wales regions differ fundamentally because of long‐term differences in extrinsic factors. Since the late Pliocene, periods of cold climate and low sea‐level segregated warm temperate organisms east or west of an emergent Bassian Isthmus resulting in population divergence and speciation; during subsequent periods of warmer and higher seas, sister taxa expanded into the Bass Strait region leading to weakly correlated phylogeographic and biogeographic patterns. The Sydney region, by contrast, has been more consistently favourable to shifts in species’ ranges and long‐distance movement, resulting in a lack of intra‐specific and species‐level diversification. Comparisons between the Sydney and Bass Strait regions and prior studies in North America suggest that vicariance plays a key role in generating coastal biodiversity and that dispersal explains many of the deviations from the phylogeographic hypotheses.  相似文献   

4.
We have assessed the utility of a single-copy nuclear locus and mitochondrial DNA (mtDNA) in a phylogeographic study of the New Zealand stick insect Niveaphasma annulata (Hutton). We amplified sequences from the mitochondrial cytochrome oxidase subunit I (COI) gene and the single-copy nuclear gene elongation factor-1α (EF1α) from 97 individuals. Allelic phase at the EF1α locus was determined using Denaturing Gradient Gel Electrophoresis. Phylogenetic analyses showed broad congruence between the geographic distribution of three major COI clades and EF1α alleles, which suggested that the phylogenetic patterns reflect population history rather than lineage sorting. However, the geographic boundaries of these clades were not always in exact agreement between the two loci. Our data indicate that Niveaphasma annulata was most likely separated into a number of refugia during Pleistocene glacial advances. Subsequent to glacial retreat these refugial populations have expanded and now form a number of zones of secondary contact. We contrast these patterns with those observed from other New Zealand taxa. Our study offers compelling evidence for the use of nuclear genes alongside mtDNA for future phylogeographic studies.  相似文献   

5.
Aim Twentieth century biogeographers developed intriguing hypotheses involving West Wind Drift dispersal of Southern Hemisphere biota, but such models were largely abandoned in favour of vicariance following the development of plate tectonic theory. Here I present a synthesis of southern temperate marine biogeography, and suggest some new directions for phylogeographic research. Location The southern continents, formerly contiguous components of Gondwana, are now linked only by ocean currents driven by the West Wind Drift. Methods While vicariance theory certainly facilitates the development of testable hypotheses, it does not necessarily follow that vicariance explains much of contemporary southern marine biogeography. To overcome the limitations of narratives that simply assume vicariance or dispersal, it is essential for analyses to test biogeographic hypotheses by incorporating genetic, ecological and geological data. Results Recent molecular studies have provided strong evidence for dispersal, but relatively little evidence for the biogeographic role of plate tectonics in distributing southern marine taxa. Despite confident panbiogeographic claims to the contrary, molecular and ecological studies of buoyant macroalgae, such as Macrocystis, indicate that dispersal predominates. Ironically, some of the better supported evidence for marine vicariance in southern waters has little or nothing to do with plate tectonics. Rather, it involves far more localized and recent vicariant models, such as the isolating effect of the Bassian Isthmus during Pleistocene low sea‐level stands (Nerita). Main conclusions Recent phylogeographic studies of southern marine taxa (e.g. Diloma and Parvulastra) imply that passive rafting cannot be ignored as an important mechanism of long‐distance dispersal. I outline a new direction for southern hemisphere phylogeography, involving genetic analyses of bull‐kelp (Durvillaea) and its associated holdfast invertebrate communities.  相似文献   

6.
Marine biogeographers have long recognized broad east–west differentiation of marine communities across southern Australia, but few studies have explicitly assessed the site of disjunction or the factors potentially underlying this biodiversity. A recent, detailed phylogeographical and distributional study of the dispersive gastropod genus Nerita revealed an abrupt shift in species abundance across mainland Australia, apparently correlated with the site of an historical vicariant barrier: the Bassian Isthmus. In the current study I provide an independent assessment of this vicariant hypothesis by morphologically analysing over 3000 intertidal Nerita specimens from eight coastal sites around Tasmania. Consistent with the Bassian Isthmus hypothesis, the study reveals a dramatic east–west disjunction across north-east Tasmania. A survey of marine biogeographical literature reveals several additional examples supporting the east–west species turnover detected in Nerita . I discuss the role of contemporary oceanographic factors in preserving the biogeographical signature of marine vicariance, even in highly dispersive taxa. Based on recent marine connectivity data, the east–west disjunction in Nerita taxa can be interpreted as an historic vicariant pattern perpetuated by contemporary oceanographic conditions. The results of this study emphasize the potential importance of considering relative abundance data – rather than just species range data – in marine biogeographical analyses. As the observed disjunction is likely to have broad implications for Australia's marine biodiversity, it is imperative that conservation biologists incorporate such data in the design of marine protected areas.  相似文献   

7.
Vicariance and dispersal can strongly influence population genetic structure and allopatric speciation, but their importance in the origin of marine biodiversity is unresolved. In transitional estuarine environments, habitat discreteness and dispersal barriers could enhance divergence and provide insight to evolutionary mechanisms underlying marine and freshwater biodiversity. We examined this by assessing phylogeographic structure in the widespread amphipod Gammarus tigrinus across 13 estuaries spanning its northwest Atlantic range from Quebec to Florida. Mitochondrial cytochrome c oxidase I and nuclear internal transcribed spacer 1 phylogenies supported deep genetic structure consistent with Pliocene separation and cryptic northern and southern species. This break occurred across the Virginian-Carolinian coastal biogeographic zone, where an oceanographic discontinuity may restrict gene flow. Ten estuarine populations of the northern species occurred in four distinct clades, supportive of Pleistocene separation. Glaciation effects on genetic structure of estuarine populations are largely unknown, but analysis of molecular variance (AMOVA) supported a phylogeographic break among clades in formerly glaciated versus nonglaciated areas across Cape Cod, Massachusetts. This finding was concordant with patterns in other coastal species, though there was no significant relationship between latitude and genetic diversity. This supports Pleistocene vicariance events and divergence of clades in different northern glacial refugia. AMOVA results and private haplotypes in most populations support an allopatric distribution across estuaries. Clade mixture zones are consistent with historical colonization and human-mediated transfer. An isolation-by-distance model of divergence was detected after we excluded a suspected invasive haplotype in the St. Lawrence estuary. The occurrence of cryptic species and divergent population structure support limited dispersal, dispersed habitat distribution, and historical factors as important determinants of estuarine speciation and diversification.  相似文献   

8.
Aim The rise of the Isthmus of Panama and the formation of ‘geminate’ species pairs serves as an important model of allopatric speciation. However, to function as a model system, hypothesized geminates must first be shown to be each other’s closest living relatives. If the presence of cryptic taxa obscures true relationships, the biogeographical histories of transisthmian taxa are likely to be misinterpreted. We have therefore completed a phylogeographic survey of the transisthmian bivalve subgenus Acar in the genus Barbatia to characterize patterns of tropical American diversity and to place transisthmian taxa in a regional phylogeographic context. Location Tropical America. Methods Mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer (ITS) sequences were obtained from 233 specimens of Acar. Sequences were analysed using cladistic and Bayesian methods. Divergence times between species were inferred from net nucleotide divergences and a coalescence‐based method. Results The survey revealed 22 COI clades that were also monophyletic at ITS, indicating that the taxonomy of Acar is potentially greater than a fivefold diversity underestimate. The lone previously recognized geminate [Barbatia (Acar) gradata and Barbatia (Acar) domingensis] is composed of 15 clades. Among the four transisthmian lineages identified, two diverged more than 14 Ma; the two other geminates split just prior to the time of final seaway closure. In addition to a fourfold increase in the number of known geminates, our data show that within‐basin diversification has been more impressive, with one geminate splitting into five monophyletic clades in the Western Atlantic alone since seaway closure. Electron microscopy of the larval shells of specimens indicates that the transisthmian lineage with the greatest rate of post‐Isthmian diversification possesses non‐planktonic larvae, a life‐history feature linked to high speciation rates. Main conclusions Our analyses revealed that the identities of geminate pairs split by the Isthmus of Panama were obscured by extremely high tropical American cryptic diversity. Although we have identified four geminates, only two appear to have been split by the Isthmus. Our uncovering of extensive post‐Isthmian diversification is consistent with the palaeontological perspective that the final closure of the Central American Seaway was followed by high rates of subgeneric diversification, particularly in the tropical Western Atlantic.  相似文献   

9.
The widespread lycaenid butterfly Tongeia fischeri is distributed from eastern Europe to northeastern Asia and represented by three geographically isolated populations in Japan. In order to clarify the phylogeographic history of the species, we used sequences of three mitochondrial (COI, Cyt b and ND5) and two nuclear (Rpl5 and Ldh) genes of 207 individuals collected from 55 sites throughout Japan and five sites on the Asian continent. Phylogenetic trees and the median-joining network revealed six evolutionary mitochondrial haplotype clades, which corresponded to the geographic distribution of the species. Common ancestors of Japanese T. fischeri might have come to Japan during the mid-Pleistocene by multiple dispersals of continental populations, probably via a land bridge or narrow channel between western Japan and the Korean Peninsula. The geographical patterns of variation of mitochondrial and nuclear markers are discordant in northeastern Kyushu, possibly as a result of introgressive hybridization during the ancient contact between the Kyushu and Shikoku populations in the last glacial maximum. The phylogeographic pattern of T. fischeri in Japan are probably related to the geological history, Pleistocene climatic oscillations and distribution of the host plant.  相似文献   

10.
Antitropicality is a distribution pattern where closely related taxa are separated by an intertropical latitudinal gap. Two potential examples include Brachidontes darwinianus (south eastern Brazil to Uruguay), considered by some authors as a synonym of B. exustus (Gulf of Mexico and the Caribbean), and B. solisianus, distributed along the Brazilian coast with dubious records north of the intertropical zone. Using two nuclear (18S and 28S rDNA) and one mitochondrial gene (mtDNA COI), we aimed to elucidate the phylogeographic and phylogenetic relationships among the scorched mussels present in the warm‐temperate region of the southwest Atlantic. We evaluated a divergence process mediated by the tropical zone over alternative phylogeographic hypotheses. Brachidontes solisianus was closely related to B. exustus I, a species with which it exhibits an antitropical distribution. Their divergence time was approximately 2.6 Ma, consistent with the intensification of Amazon River flow. Brachidontes darwinianus, an estuarine species is shown here not to be related to this B. exustus complex. We suspect ancestral forms may have dispersed from the Caribbean to the Atlantic coast via the Trans‐Amazonian seaway (Miocene). The third species, B rodriguezii is presumed to have a long history in the region with related fossil forms going back to the Miocene. Although scorched mussels are very similar in appearance, their evolutionary histories are very different, involving major historical contingencies as the formation of the Amazon River, the Panama Isthmus, and the last marine transgression.  相似文献   

11.
The common seadragon is an iconic fish with presumed limited dispersal, because juveniles hatch directly from the tail of the male parent. Nothing is presently known of their phylogeographic structure, despite conservation concerns and a distribution spanning southern Australia. Here, we sequenced mitochondrial genes from 201 common seadragons in Western Australia, South Australia, Victoria, Tasmania and New South Wales. We show that common seadragon populations are highly structured geographically, and that genetic variation varies significantly. The historical Bassian Isthmus appears to have left a strong imprint on population structure. Populations east of the Bassian Isthmus are low in diversity and appear more connected than those in the west, although this is likely caused by a recent expansion from a common source after the Last Glacial Maximum. All individuals from Eden, Bicheno and Hobart are represented by only two haplotypes. Populations west of the Bassian Isthmus are more diverse, with the highest diversity indices shown by Western Australian and Spencer Gulf populations. A large sampling gap across the Great Australian Bight is yet to be resolved; the west versus east break here may be an artifact of this gap. Almost all sampled populations can be inferred to have limited gene flow among them, which has implications for recovery after local extinction. Populations thought to be in decline (Sydney, Hobart) showed low genetic diversity, which may make them vulnerable to further reductions.  相似文献   

12.
Tropical marine habitats often harbor high biodiversity, including many cryptic taxa. Though the prevalence of cryptic marine taxa is well known, the evolutionary histories of these groups remain poorly understood. The snapping shrimp genus Alpheus is a good model for such investigations, as cryptic species complexes are very common, indicating widespread genetic diversification with little or no morphological change. Here, we present an extensive phylogeographic investigation of the diversified amphi-American Alpheus armillatus species complex, with geographic sampling in the Caribbean Sea, Gulf of Mexico, Florida, Brazil, and the tropical Eastern Pacific. Sequence data from two mitochondrial genes (16SrRNA and cytochrome oxidase I) and one nuclear gene (myosin heavy chain) provide strong evidence for division of the species complex into six major clades, with extensive substructure within each clade. Our total data set suggests that the A. armillatus complex includes no less than 19 putative divergent lineages, 11 in the Western Atlantic and 8 in the Eastern Pacific. Estimates of divergence times from Bayesian analyses indicate that the radiation of the species complex began ~10 MYA with the most recent divergences among subclades dating to within the last 3 MY. Furthermore, individuals from the six major clades had broadly overlapping geographic distributions, which may reflect secondary contact among previously isolated lineages, and have apparently undergone several changes in superficial coloration, which is typically the most pronounced phenotypic character distinguishing lineages. In addition, the extensive substructure within clades indicates a great deal of molecular diversification following the rise of the Isthmus of Panama. In summary, this investigation reflects substantial biodiversity concealed by morphological similarity, and suggests that both ancient and ongoing divergences have contributed to the generation of this biodiversity. It also underlines the necessity to work with the most complete data set possible, which includes comprehensive and wide-ranging sampling of taxa.  相似文献   

13.
The drivers behind evolutionary innovations such as contrasting life histories and morphological change are central questions of evolutionary biology. However, the environmental and ecological contexts linked to evolutionary innovations are generally unclear. During the Pleistocene glacial cycles, grounded ice sheets expanded across the Southern Ocean continental shelf. Limited ice‐free areas remained, and fauna were isolated from other refugial populations. Survival in Southern Ocean refugia could present opportunities for ecological adaptation and evolutionary innovation. Here, we reconstructed the phylogeographic patterns of circum‐Antarctic brittle stars Ophionotus victoriae and Ohexactis with contrasting life histories (broadcasting vs brooding) and morphology (5 vs 6 arms). We examined the evolutionary relationship between the two species using cytochrome c oxidase subunit I (COI) data. COI data suggested that Ovictoriae is a single species (rather than a species complex) and is closely related to Ohexactis (a separate species). Since their recent divergence in the mid‐Pleistocene, Ovictoriae and Ohexactis likely persisted differently throughout glacial maxima, in deep‐sea and Antarctic island refugia, respectively. Genetic connectivity, within and between the Antarctic continental shelf and islands, was also observed and could be linked to the Antarctic Circumpolar Current and local oceanographic regimes. Signatures of a probable seascape corridor linking connectivity between the Scotia Sea and Prydz Bay are also highlighted. We suggest that survival in Antarctic island refugia was associated with increase in arm number and a switch from broadcast spawning to brooding in Ohexactis, and propose that it could be linked to environmental changes (such as salinity) associated with intensified interglacial‐glacial cycles.  相似文献   

14.
The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041–0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures due to differing environmental conditions.  相似文献   

15.
To investigate the role of vicariance and dispersal on New Zealand's estuarine biodiversity, we examined variability in mitochondrial cytochrome c oxidase subunit I (COI) gene sequences for the amphipod genus Paracorophium. Individuals from the two nominate endemic species (Paracorophium excavatum and Paracorophium lucasi) were collected from sites throughout the North and South Islands. Sequence divergences of 12.8% were detected among the species. However, divergences of up to 11.7% were also observed between well supported clades, suggesting the possibility of cryptic species. Nested clade analyses identified four distinct lineages from within both P. excavatum and P. lucasi, with boundaries between clades corresponding to topographical features (e.g. Cook Straight, North and East Cape). Sequence divergences of 3.7–4.9% were also observed within geographic regions (e.g. east and west coasts of the upper North Island). Genetic structure in Paracorophium appears to represent prolonged isolation and allopatric evolutionary processes dating back to the Upper Miocene and continuing through the Pliocene and early Pleistocene. On the basis of molecular clock estimates from sequence divergences and reconstructions of New Zealand's geological past, we suggest that sea level and landmass changes during the early Pleistocene (2 Mya) resulted in the isolation of previously contiguous populations leading to the present‐day patterns. COI genetic structure was largely congruent with previously observed allozyme patterns and highlights the utility of COI as an appropriate marker for phylogeographic studies of the New Zealand estuarine fauna. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 863–874.  相似文献   

16.
Approximately three million years ago the Isthmus of Panama formed an impenetrable land barrier between the tropical eastern Pacific Ocean and the tropical western Atlantic Ocean. Since this time, isolated geminate species have evolved from once contiguous populations, either side of the barrier. One such organism whose distribution is divided by the Isthmus is the tropical brittlestar Ophiactis savignyi, once suggested to be the most common brittlestar in the world. Rather than showing a genetic pattern consistent with a history of isolation, we show that this species has recently dispersed between the Pacific Ocean and the western Atlantic Ocean. This conclusion is based upon a phylogenetic analysis using sequences of the COI mitochondrial DNA gene from these populations. Identical haplotypes between oceans, and a genetic signature of population expansion, provide compelling evidence that the western Atlantic contains at least one cluster of haplotypes recently derived from the Indo-Pacific. Inadvertent human-aided translocation of individuals, presumably in ballast water or fouling communities, is strongly implicated as a mechanism for dispersal between oceans. We believe that cryptic marine invasions are likely to be common and our awareness of them will rapidly increase as systematic and phylogeographic knowledge of marine taxa grow.  相似文献   

17.
Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems.  相似文献   

18.
Hu ZM  Uwai S  Yu SH  Komatsu T  Ajisaka T  Duan DL 《Molecular ecology》2011,20(18):3894-3909
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting.  相似文献   

19.
Population genetics has gained popularity as a method to discover glacial refugia in terrestrial species, but has only recently been applied to the marine realm. The last glacial maxima occurred 20,000 years ago, decreasing sea levels by 120 m and exposing much of the continental shelf in the northern Gulf of Mexico, with the exception of De Soto Canyon (2100 m depth). The goal of this study was to determine whether population dynamics of the giant deep-sea isopod, Bathynomus giganteus, were better explained by habitat diversity or by the past presence of a marine glacial refugium in De Soto Canyon. To accomplish this we (1) measured genetic diversity in De Soto Canyon and adjacent regions, (2) characterized gene flow and connectivity between these regions, and (3) investigated historical changes to population size. We sequenced three mitochondrial loci (12S, 16S, and COI) from 212 individuals and also performed a next-generation sequencing pilot study using double digest Restriction site-Associated DNA sequencing. We found high genetic diversity and connectivity throughout the study regions, migration between all three regions, low population differentiation, and evidence of population expansion. This study suggests that habitat heterogeneity, rather than the presence of a glacial refugium, has had an historical effect on the population dynamics of B. giganteus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号