首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Zostera marina L. (eelgrass) from Great Bay Estuary, New Hampshire and Maine (USA), was transplanted in outdoor mesocosms and subjected to four light treatments (100, 58, 34 and 11% surface irradiance, SI) between May and September 2003 to investigate the relationship between light availability and the growth and survival of eelgrass. Evaluating eelgrass seedlings and adult mature plants demonstrated no differences in photosynthetic response after 22 days of acclimation. During at least the first 19 days of shading, maximum electron transport rate (ETRmax) rate of eelgrass did not differ significantly between light treatments. After 40 days, a significant reduction in ETRmax and minimum saturating light was observed in plants growing at 34% SI and below. Morphological responses exhibited a linear increasing trend with greater light. 34% SI exhibited drastic reductions (to less than 25% of control) in rhizome growth, shoot density, shoot production, number of nodes per plant and plant weight at the end of the study (81 days). Shoot to root ratio at 34% SI increased by > 50%. Plants shaded to 58% SI showed no significant difference from the control in plant parameters except an increased rate of rhizome elongation. Our results link the lower shoot densities with shading to the slow growth rate of horizontal rhizomes and a total lack of lateral expansion at 11% SI. ETRmax declined over time in plants at 11% SI resulting in 81% mortality, no lateral branching and no morphological development, indicating that the minimum light required for long-term eelgrass growth and survival is greater than the previously suggested 11% SI. We demonstrate that eelgrass plants at these latitudes can persist at light levels of 58% SI and above, and are light-limited at 34% SI and below.  相似文献   

2.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones.  相似文献   

3.
Ocean temperatures are rising and fish are redistributing themselves poleward and into deeper waters to retain a favourable thermal environment (11 and 30). To investigate whether biogeographical shifts might occur through behavioural redistribution into optimal environments, we examined whether a common triplefin species (Forsterygion lapillum) would behaviourally select (i.e. track) a temperature that matches its physiological optimum under laboratory conditions. F. lapillum were acclimated to 15, 18 or 21 °C for at least 4 weeks, after which various rates of oxygen consumption (MO2) were measured using automated respirometry and their behavioural thermal preferenda assessed using an electronic shuttle choice tank. Aerobic metabolic scope (resolved as the difference between maximal and maintenance MO2) did not differ across all thermal treatments (i.e. specimens acclimated to 15, 18 or 21 °C) revealing that F. lapillum is a eurythermal species with a range of optimal physiological performance that closely matches the environmental conditions they are exposed to. A comparably wide range of behavioural preference would perhaps be expected but all three acclimation groups showed a surprisingly narrow behavioural preference range of 20–21 °C. The results therefore suggest that, irrespective of acclimation, eurythermal species may have a tendency to select optimal temperatures at the upper limit of their thermal distribution range. The results are discussed in the context of the ecology and the expected response of F. lapillum to future thermal change.  相似文献   

4.
In many ectotherms, selection of environmental thermal niches may positively affect growth, nutrient assimilation rates, immune system function, and ultimately survival. Temperature preference in some turtle species may be influenced by environmental conditions, including acclimation temperature. We tested for effects of acclimation temperature (22 °C, 27 °C) on the selected temperature and movement patterns of 14 juvenile Malaclemys terrapin (Reptilia: Emydidae) in an aquatic thermal gradient of 14–34 °C and in single-temperature (22 °C, 27 °C) control tests. Among 8–10 month old terrapins, acclimation temperature influenced activity and movement patterns but did not affect temperature selection. In thermal gradient and single-temperature control tests, turtles acclimated to 27 °C used more tank chambers and relocated between chambers significantly more frequently than individuals acclimated to 22 °C. However, acclimation temperature did not affect temperature selection: both 22- and 27 °C-acclimated turtles selected the warmest temperature (34 °C), and avoided the other temperatures available, during thermal gradient tests. These results suggest that young M. terrapin are capable of detecting small temperature increments and prefer warm temperatures that may positively influence growth and metabolism.  相似文献   

5.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

6.
We tested the effects of salinity and water temperature on the ecological performance of eelgrass (Zostera marina L.) in culture-experiments to identify levels that could potentially limit survival and growth and, thus, the spatial distribution of eelgrass in temperate estuaries. The experiments included eight levels of salinity (2.5, 5, 10, 15, 20, 25, 30 and 35‰) and seven water temperatures (5, 10, 15, 20, 25, 27.5 and 30 °C). Low salinity (i.e. 5 and 2.5‰) increased mortality (3–6-fold) and had a strong negative effect on shoot morphology (number of leaves per shoot reduced by 40% and shoot biomass reduced by 30–40%), photosynthetic capacity (Pmax—reduced by 30–80%) and growth (production of new leaves reduced by 50–60%, leaf elongation rate reduced by 60–70% and production of side-shoots reduced by 40–60%), whereas eelgrass performed almost equally well at salinities between 10 and 35‰. The optimum salinity for eelgrass was between 10 and 25‰ depending on the response parameter in question. Extreme water temperatures had an overall negative impact on eelgrass, although via different mechanisms. Low water temperatures (5 °C) slowed down photosynthetic rate (by 75%) and growth (production of new leaves by 30% and leaf elongation rate by 80%), but did not affect mortality, whereas high temperatures (25–30 °C) increased mortality (12-fold) and lowered both photosynthetic rate (by 50%) and growth (production of new leaves by 50% and leaf elongation rate by 75%). The optimum water temperature for eelgrass appeared to lie between 10 and 20 °C. These results show that extreme conditions may affect the fitness of eelgrass and, thus, may potentially limit its distribution in coastal and estuarine waters.  相似文献   

7.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

8.
Final temperature preferendum of white shrimp adults were determined with acute and gravitation methods. The final preferendum was similar, independent of method (26.2–25.6 °C). A direct relationship was determined between the critical thermal maxima values and the acclimation temperatures (P<0.05). The end point of Critical Thermal Maxima (CTMax) for adults was defined as the loss of righting response (LRR). The acclimation response ratio (ARR) for adults of white shrimp had an interval of 0.36–0.76, values that agreed with others obtained for crustaceans from tropical and subtropical climates. The oxygen consumption rates increased significantly (P<0.05) from 39.6 up to 90.0 mg O2 kg−1 h−1 wet weight (w.w.) as the acclimation temperature increased from 20 to 32 °C. The range of temperature coefficient (Q10) of the white shrimp between 23 and 26 °C was the lower 1.60. The results obtained in this work are discussed in relation to the species importance in the reproductive scope and maintenance of breeders.  相似文献   

9.
Thermotolerance (CTMax) was determined in L. vannamei in three salinities and five acclimation temperatures 20, 23, 26, 29 and 32 °C. In white shrimp, the CTMax was not significantly affected by salinity (P>0.05). A direct relationship was obtained between CTMax and acclimation temperature. The end point of the CTMax in L. vannamei exposed to different combinations of temperature and salinity was defined as the loss of the righting response (LRR). The acclimation response ratio (ARR) for the juveniles of white shrimp ranged from 0.42 to 0.49; values in agreement with other crustaceans from tropical and sub tropical climates. The osmotic pressure of the hemolymph was measured in control organisms and in organisms exposed to CTMax; significant differences were found in organisms maintained in 10 and 40 psu, but there were no significant differences in hemolymph osmotic pressure in those that were acclimated to 26 psu.  相似文献   

10.
《Aquatic Botany》1987,27(1):15-26
The relationships between light regime, photosynthesis, growth and depth distribution of a temperate seagrass, Zostera marina L. (eelgrass), were investigated in a subtidal eelgrass meadow near Woods Hole, MA. The seasonal light patterns in which the quantum irradiance exceeded the light compensation point (Hcomp) and light saturation point (Hsat) for eelgrass photosynthesis were determined. Along with photosynthesis and respiration rates, these patterns were used to predict carbon balances monthly throughout the year. Gross photosynthesis peaked in late-summer, but net photosynthesis peaked in spring (May), due to high respiration rates at summer temperatures. Predictions of net photosynthesis correlated with in situ growth rates at the study site and with reports from other locations.The maximum depth limit for eelgrass was related to the depth distribution of Hcomp, and a minimum annual average Hcomp (12.3 h) for survival was determined. Maximum depth limits for eelgrass were predicted for various light extinction coefficients and a relationship between Secchi disc depth and the maximum depth limit for survival was established. The Secchi disc depth averaged over the year approximates the light compensation depth for eelgrass. This relationship may be applicable to other sites and other seagrass species.  相似文献   

11.
The resting metabolic rate (RMR) of seasonally-acclimated Mabuya brevicollis of various body masses was determined at 20, 25, 30, 35 and 40 °C, using open-flow respirometry. RMR (ml g−1 h−1) decreased with increasing mass at each temperature. RMRs increaProd. Type: FTPsed as temperature increased. The highest and lowest Q10 values were obtained for the temperature ranges 20–25 °C and 30–35 °C for the summer-acclimated lizards. The exponent of mass “b” in the metabolism-body mass relation ranged from 0.41 to 0.61. b values were lower in the autumn and winter-acclimated lizards than in spring and summer-acclimated lizards. Seasonal acclimation effects were evident at all temperatures (20–40 °C) for M. brevicollis. Winter-acclimated skinks had the lowest metabolic rates at different temperatures. The pattern of acclimation exhibited by M. brevicollis may represent a useful adaptation for lizards inhabiting subtropical deserts to promote activity during their active seasons.  相似文献   

12.
Effective thermoregulation and the ability to select preferred temperature is an important factor influencing fitness in hatchling and juvenile turtles. Six-month-old Glyptemys insculpta acclimated to 20 °C selected the warmest temperature available and avoided the coldest temperature available in a gradient of 12–27 °C. Turtles visited fewer chambers and switched chambers in the gradient tank less frequently when the gradient was present than during control tests. Mean selection of chambers differed between control and gradient tests across all temperatures except at 21 °C, the temperature closest to the acclimation and control temperature (20 °C).  相似文献   

13.
Mumford Cove, a 48 ha Connecticut embayment on Long Island Sound, has a history of excessive nutrient inputs and corresponding eutrophic conditions with concomitant eelgrass (Zostera marina L.) loss. From 1945 to 1987, a municipal wastewater treatment facility discharged into the cove. In 1987, when the wastewater outfall was diverted to another location, the cove supported a near monoculture of the green algae Ulva lactuca L., covering 74% of the bottom. By 1988, macroalgal areal cover in Mumford Cove had declined to 9%. When we first sampled the cove in 1992, Z. marina and Ruppia maritima L. were present. By 1999, areal distribution of Z. marina and R. maritima had expanded to cover a third of the bottom. Periodic summertime surveys from 2002 through 2004 indicated that Z. marina was present in approximately half of the cove; R. maritima was sparse. Fifteen years after termination of nutrient enrichment, this cove had recovered from 40 years of point source anthropogenic nutrient input, returning from an Ulva-dominated to a Zostera-dominated state.  相似文献   

14.
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25 ppt) to 10 °C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 °C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7 ppt cultures acclimated to each temperature and then transferred to 3.5 ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30 days (3.5 ppt, 2 °C: 0% viability), 60 days (3.5 ppt, 10 °C: 0% viability) and 90 days (7 ppt, 2 °C: 0.6 ± 0.7%; 7 ppt, 10 °C: 0.2 ± 0.2%).  相似文献   

15.
This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1 °C increase h−1) and thermal selection (∼10-24 °C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16 °C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25 °C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2 °C, 27.8±0.2 °C and 31.4±0.1 °C. The upper, 23.1±0.2 °C, and lower, 15.0±1.7 °C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10 °C-25 °C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2 nmol larvae−1 h−1 in one-day old larvae to 40.1-99.4 nmol h−1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25 °C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25 °C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.  相似文献   

16.
Mesopodopsis africana is a key species in the St. Lucia Estuary, Africa's largest estuarine lake. This system is currently undergoing an unprecedented crisis due to freshwater deprivation. A reversed salinity gradient has persisted with hypersaline conditions (> 300) occurring in the upper regions of the estuarine lake. In the context of climate change, rising temperatures will not only push the thermal tolerance limits of estuarine organisms, but increased evaporation from this lake's large surface area will lead to further salinity increases. The present study aims to determine the temperature and salinity tolerance of M. africana, both through in situ studies and the use of laboratory experiments. Results indicate that M. africana is a broad euryhaline species. Mysids were recorded at salinity levels ranging from 2.55 to 64.5 in situ. While experiments revealed a narrower salinity tolerance, acclimation resulted in a significant increase in the tolerance range of this species. It is probable, however, that slower acclimation times may increase survival rates even further, particularly in the higher salinity treatments. M. africana was especially tolerant of the lower salinity levels. In the 20 °C acclimation experiment, LS50 at 1 and 2.5 was only reached after 8 and > 168 h, respectively. Survival at 10 and 40 °C was negligible at all salinity levels. This concurs with field results which documented mysids at temperatures ranging from 16.2 to 30.9 °C. Salinity and temperature increases associated with global climate change may, therefore, have significant implications for these mysid populations, with cascading effects on the higher trophic levels which they support.  相似文献   

17.
18.
Density, biomass and primary productivity of eelgrass (Zostera marina L.) and density and biomass of Zostera noltii Hornem. were studied at three locations in Sevastopol Bay, Crimean Peninsula, Ukraine, in April 2002, late September 2002, and late January 2003 at 3 m and 5 m depths. All three growth parameters varied by station, depth, and month. The aboveground biomass (AGB) was greater in September than in April or January at 3 m. It was greater at 5 m than at 3 m in April at one station. For Z. noltii, results were more variable as to month. For belowground biomass (BGB), month and station relationships were not clear cut. It was generally true that total biomass was greatest in September. Significant differences in density, AGB and total biomass were observed for station and month in eelgrass, while in BGB, these differences were significant for depth and for month. Primary production in eelgrass was greatest at both depths in April as compared to September or January. Reproductive shoots were found only during April. Overall, seedlings were found in all collection periods and depths, but were most abundant at the three stations in April.  相似文献   

19.
Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38–0.78 g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30 °C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4 °C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18–30 °C resulted in a calculated area of 210.0 °C2. The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30 °C. Maximum and minimum temperature quotients (Q10) were observed between 26–30 °C and 22–26 °C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.  相似文献   

20.
The negative effects of climate alteration on coral reef fishes receive ever increasing attention; however, implications of rising sea temperatures on fishes inhabiting marine nursery environments are poorly understood. We used critical thermal methodology to quantify critical thermal maxima (CTmaxima) of juvenile squaretail mullet (Liza vaigiensis) and juvenile crescent terapon (Terapon jarbua) captured from shallow seagrass nursery areas around Hoga Island, southeast Sulawesi, Indonesia. We tested the hypothesis that these distantly related fishes, when acclimated to cycling temperatures, would display higher CTmaxima than groups acclimated at constant temperatures. Groups of mullet acclimated to a constant temperature of 37 °C and temperature cycles of 35 to 39 °C or 37 to 41 °C displayed statistically similar mean CTmaxima of 44.7, 44.4 and 44.8 °C, respectively. Likewise, terapon acclimated at temperature cycles of 37 to 40 °C did not display a higher CTmaxima than fish acclimated at a constant temperature of 37 °C, with both acclimation groups' mean CTmaxima equal to 43.8 °C. Acclimation to higher cycling temperatures did not result in significant upper temperature tolerance acquisition for either species; however, mullet values were significantly higher than those seen in terapon (P < 0.0001). These data suggest that mullet and terapon will not suffer direct thermal effects should shallow nursery temperature increases be marginally higher than 1-2 °C above ~ 27 °C, and they provide evidence that the upper thermal tolerance of fishes inhabiting shallow seagrass and mangrove areas can approach the biokinetic limits for vertebrate life. Tropical marine fishes inhabiting fringing nursery environments may have the upper thermal tolerance necessary to endure substantial increases in sea temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号