首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intervening sequence (IVS) of the Tetrahymena thermophila ribosomal RNA precursor undergoes accurate self-splicing in vitro. The work presented here examines the requirement for Tetrahymena rRNA sequences in the 5' exon for the accuracy and efficiency of splicing. Three plasmids were constructed with nine, four and two nucleotides of the natural 5' exon sequence, followed by the IVS and 26 nucleotides of the Tetrahymena 3' exon. RNA was transcribed from these plasmids in vitro and tested for self-splicing activity. The efficiency of splicing, as measured by the production of ligated exons, is reduced as the natural 5' exon sequence is replaced with plasmid sequences. Accurate splicing persists even when only four nucleotides of the natural 5' exon sequence remain. When only two nucleotides of the natural exon remain, no ligated exons are observed. As the efficiency of the normal reaction diminishes, novel RNA species are produced in increasing amounts. The novel RNA species were examined and found to be products of aberrant reactions of the precursor RNA. Two of these aberrant reactions involve auto-addition of GTP to sites six nucleotides and 52 nucleotides downstream from the 3' splice site. The former site occurs just after the sequence GGU, and may indicate the existence of a GGU-binding site within the IVS RNA. The latter site follows the sequence CUCU, which is identical with the four nucleotides preceding the 5' splice site. This observation led to a model where where the CUCU sequence in the 3' exon acts as a cryptic 5' splice site. The model predicted the existence of a circular RNA containing the first 52 nucleotides of the 3' exon. A small circular RNA was isolated and partially sequenced and found to support the model. So, a cryptic 5' splice site can function even if it is located downstream from the 3' splice site. Precursor RNA labeled at its 5' end, presumably by a GTP exchange reaction mediated by the IVS, is also described.  相似文献   

2.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro.  相似文献   

3.
An RNA molecule consisting of the 5' exon and intervening sequence (IVS) of Tetrahymena precursor rRNA was oxidized with sodium periodate to convert the ribose moiety of the 3' terminal guanosine into a dialdehyde form. The modified RNA undergoes a specific cleavage reaction at the 5' splice site, but has no apparent cyclization activity. This novel reaction mediated by the IVS RNA is pH dependent over the range 6.5-8.5 and leaves a 5' phosphate and a 3'-OH at the newly created termini. The dialdehyde form of monomer guanosine is also capable of causing a specific cleavage reaction at the 5' splice site although the nucleotide is not covalently attached to the IVS RNA in the final product. These and other findings described in this report suggest that the cis diol of the intact ribose moiety of guanosine is not an absolute requirement for the IVS-mediated reactions.  相似文献   

4.
The presence of a natural rRNA secondary structure element immediately preceding the 5' splice site of the Tetrahymena IVS can inhibit self-splicing by competing with base pairing between the 5' exon and the guide sequence of the IVS (P1). Formation of this alternative hairpin is preferred in short precursor RNAs, and results in loss of G-addition to the 5' splice site. Pre-rRNAs which contain longer exons of ribosomal sequence, however, splice rapidly. As many as 146 nucleotides of the 5' exon and 86 nucleotides of the 3' exon are required for efficient self-splicing of Tetrahymena precursors. The presence of nucleotides distant from the 5' splice site apparently alters the equilibrium between the alternative hairpins, and promotes formation of active precursors. This effect is dependent on the specific sequences of the ribosomal pre-RNA, since point mutations within this region reduce the rate of splicing as much as 50-fold. This system provides an opportunity to study the way in which long-range interactions can influence splice site selection in a highly structured RNA.  相似文献   

5.
Three cloned apolipoprotein A-II genes were isolated from a human genomic cosmid library constructed in our laboratory. An approximately 3-kilobase HindIII insert containing the entire gene was analyzed by RNA:DNA hybridization and electron microscopy. The apo-A-II gene was found to consist of 4 exons and 3 intervening sequences (IVS), and the lengths of each exon and IVS were estimated by direct observation of the hybrids. The entire approximately 3-kilobase HindIII insert was sequenced. The 5' end of the gene was determined by primer extension. The DNA sequence confirms the presence of 4 exons and 3 IVS: exon 1, 34 nucleotides; exon 2, 76 nucleotides; exon 3, 133 nucleotides; exon 4, 230 nucleotides; IVS-I, 169 nucleotides; IVS-II, 299 nucleotides; and IVS-III, 396 nucleotides. A "TATA box" is located at position -29 from the CAP site. A "CAT box" is present at position -78. A "TG" element consisting of (TG)19 is identified at the 3' end of IVS-III. Furthermore, an enhancer core sequence, CTTTCCA, is identified at position -355 in the 5' flanking sequence. At positions -497 to -471 upstream from the CAP site is a stretch of 27 nucleotides that show high homology to stretches of 5' flanking sequences in the apo-C-II, apo-A-I, apo-E, and apo-C-III genes. An Alu dimer sequence is located approximately 300 nucleotides from the 3' end of the gene. Within this Alu sequence, we have identified a polymorphic MspI site. Restriction fragment length polymorphism involving this site has been previously shown to correlate with apo-A-II levels and high density lipoprotein structure. Analysis of conformation by Chou-Fasman analysis and by the helical hydrophobic moment of Eisenberg et al. (Eisenberg, D., Weiss, R. M., and Tergwillager, T. C. (1982). Nature (Lond.) 299, 371-374) indicates that in all of the 5 apolipoproteins characterized at the nucleotide level to date, i.e. apo-C-II, apo-A-II, apo-E, apo-A-I, and apo-C-III, the 2 IVS within the peptide coding regions of the gene tend to occur at regions corresponding to the surface of the polypeptide chain and divide the protein into distinct functional domains.  相似文献   

6.
Ribozyme constructs derived from group II intron RmInt1 of Sinorhizobium meliloti self-splice in vitro when incubated under permissive conditions, but exon ligation is unusually inefficient when the 5' exon is truncated close to the IBS2 intron-binding site. One plausible explanation for this observation is the presence of an alternative intron-exon pairing between an intron segment that overlaps with the EBS2 exon-binding site and a 5' exon site located just distal of IBS2 relative to the splice junction. Strikingly, the existence of this pairing is supported by comparative sequence analysis of introns related to RmInt1.  相似文献   

7.
We have characterized a 1.5 kb RNA species in T. thermophila macronuclei previously found in vivo and including intron sequences linked to the 3' exon. This IVS-3' exon RNA could be detected in gels as a discrete molecule only after denaturation of nuclear RNA. After addition of 32P-GTP, as splicing cofactor in a nuclear in vitro system, the IVS-3' exon RNA was labeled at its 5' terminus, as was the by-product of splicing, the excised IVS RNA. The time course of labeling indicates that the IVS-3' exon RNA acts like a reaction intermediate and specifically a kinetic precursor to IVS RNA. Partial nuclease digestions showed that the IVS-3' exon RNA and the IVS RNA have the same 5' terminal sequence. In addition the IVS-3' exon RNA can release the 15-mer oligonucleotide cleaved off during circularization of IVS RNA under conditions of high temperature. Taken together, the structural, functional, and kinetic properties of the IVS-3' exon RNA strongly suggest that it represents a previously postulated in vivo intermediate in the splicing pathway.  相似文献   

8.
F X Sullivan  T R Cech 《Cell》1985,42(2):639-648
The Tetrahymena rRNA intervening sequence (IVS) excises itself from the pre-rRNA and then mediates its own cyclization. We now find that certain di- and trinucleotides with free 3' hydroxyl groups reopen the circular IVS at the cyclization junction, producing a linear molecule with the oligonucleotide covalently attached to its 5' end. This linear molecule recyclizes with release of the added oligonucleotide. Thus the IVS RNA, like an enzyme, lowers the activation energy for both forward and reverse cleavage-ligation reactions. Certain combinations of pyrimidines are required for circle reopening. The most reactive oligonucleotide is UCU. This sequence resembles those preceding the major and minor cyclization sites in the linear IVS RNA (UUU and CCU) and the 5' splice site in the pre-rRNA (UCU). We propose that an oligopyrimidine binding site within the IVS binds the sequences upstream of each of these target sites for cleavage-ligation.  相似文献   

9.
Novel RNA polymerization reaction catalyzed by a group I ribozyme.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have converted a bacterial tRNA precursor containing a 205 nt self-splicing group I intron into a RNA enzyme that catalyzes polymerization of an external RNA substrate. The reaction involves transesterification steps analogous to both the forward and reverse exon ligation steps of group I splicing; as such it depends entirely on 3' splice site reactions. The RNA substrate is a 20 nt analogue of the ligated exons (E1.E2), whose 3' end resembles the 3' terminus of the intron RNA enzyme (IVS). The splice junction of the substrate is attacked by the 3' end of the intron, then the molecule displaces the original 3' terminal guanosine so that the new 3' terminus is brought into the active site and used as the attacking nucleophile in the next reaction. Polymerization occurs via a series of covalent enzyme-linked intermediates of the structure IVS.(E2)n, where n = 1 to > or = 18. The 5' exon accumulates during the course of the reaction and can attack the covalent intermediates to produce elongation products of structure E1.(E2)n, regenerating the intron RNA enzyme in unchanged form. In this manner, the enzyme converts 20 nt oligoribonucleotides into polyribonucleotides up to at least 180 nt by 10 nt increments. These results have significant implications for the evolution of RNA-based self-replicating systems.  相似文献   

10.
The herpes simplex virus type 1 thymidine kinase (tk) gene lacks introns and produces stable mRNA in the absence of splicing. We have prepared a hybrid gene by placing the first exon, first intron (first intervening sequence, designated IVS1), and most of the second exon of the normal human beta-globin gene into the 3' untranslated region of the tk gene. Although this hybrid gene contains all globin sequences presumed necessary for the splicing of IVS1, predominantly, unspliced stable cytoplasmic RNA is produced in both long- and short-term expression assays. Moreover, stable unspliced cytoplasmic RNA is detected whether the intron is situated in a sense or an antisense orientation. Efficient splicing of IVS1 is obtained either by deleting the majority of tk coding sequences or by relocating the globin sequences from the 3' to the 5' untranslated region of the tk gene.  相似文献   

11.
A beta globin gene from a patient with homozygous beta+ thalassemia has been cloned and completely sequenced. No changes from normal are found in the 200 nucleotides 5' to the cap site, in the 3' untranslated region up to the poly A addition site, in the small intervening sequence (IVS 1), or in the coding sequence except for a third base change in codon 2. The only other differences are in the large intervening sequence (IVS 2). One of these, at a position 16 nucleotides from the 5' end of IVS 2, has been reported previously in normal individuals, and is probably a polymorphism. Four other changes, at positions 74, 81, 666, and 705 are also seen in IVS 2. Abnormal beta globin mRNA precursors detected in the bone marrow cells of this patient, and abnormal beta globin RNA splicing observed when this gene is transcribed in a tissue culture system taken together with these IVS 2 changes, suggest that the beta+ thalassemia phenotype is produced by a decrease in normal beta globin mRNA processing.  相似文献   

12.
New RNA-mediated reactions by yeast mitochondrial group I introns.   总被引:7,自引:1,他引:6       下载免费PDF全文
The group I self-splicing reaction is initiated by attack of a guanosine nucleotide at the 5' splice site of intron-containing precursor RNA. When precursor RNA containing a yeast mitochondrial group I intron is incubated in vitro under conditions of self-splicing, guanosine nucleotide attack can also occur at other positions: (i) the 3' splice site, resulting in formation of a 3' exon carrying an extra added guanosine nucleotide at its 5' end; (ii) the first phosphodiester bond in precursor RNA synthesized from the SP6 bacteriophage promoter, leading to substitution of the first 5'-guanosine by a guanosine nucleotide from the reaction mixture; (iii) the first phosphodiester bond in already excised intron RNA, resulting in exchange of the 5' terminal guanosine nucleotide for a guanosine nucleotide from the reaction mixture. An identical sequence motif (5'-GAA-3') occurs at the 3' splice site, the 5' end of SP6 precursor RNA and at the 5' end of excised intron RNA. We propose that the aberrant reactions can be explained by base-pairing of the GAA sequence to the Internal Guide Sequence. We suggest that these reactions are mediated by the same catalytic centre of the intron RNA that governs the normal splicing reactions.  相似文献   

13.
A role for exon sequences and splice-site proximity in splice-site selection   总被引:135,自引:0,他引:135  
R Reed  T Maniatis 《Cell》1986,46(5):681-690
Analysis of the in vitro splicing products of RNA precursors containing tandem duplications of the 5' or 3' splice sites of human beta-globin IVS 1 revealed that exon sequences play an important role in the relative use of the duplicated sites. These studies also show that the proximity of the 5' and 3' splice sites is an important determinant in the selection of splice-sites. Deletion, substitution, or even subtle changes of exon sequences can alter the pattern of splice-site selection, and in many cases the splice site adjacent to the altered exon is not used. The relative use of the duplicated splice sites can also be altered by diluting the splicing extract, suggesting that factors involved in splice-site selection are limiting.  相似文献   

14.
P element somatic inhibitor (PSI) is a 97-kDa RNA-binding protein with four KH motifs that is involved in the inhibition of splicing of the Drosophila P element third intron (IVS3) in somatic cells. PSI interacts with a negative regulatory element in the IVS3 5' exon. This element contains two pseudo-5' splice sites, termed F1 and F2. To identify high affinity binding sites for the PSI protein, in vitro selection (SELEX) was performed using a random RNA oligonucleotide pool. Alignment of high affinity PSI-binding RNAs revealed a degenerate consensus sequence consisting of a short core motif of CUU flanked by alternative purines and pyrimidines. Interestingly, this sequence resembles the F2 pseudo-5' splice site in the P element negative regulatory element. Additionally, a negative in vitro selection of PCR-mutagenized P element 5' exon regulatory element RNAs identified two U residues in the F1 and F2 pseudo-5' splice sites as important nucleotides for PSI binding and the U residue in the F2 region is a nearly invariant nucleotide in the consensus SELEX motif. The high affinity PSI SELEX sequence acted as a splicing inhibitor when placed in the context of a P element splicing pre-mRNA in vitro. Data from in vitro splicing assays, UV crosslinking and RNA-binding competition experiments indicates a strong correlation between the binding affinities of PSI for the SELEX sequences and their ability to modulate splicing of P element IVS3 in vitro.  相似文献   

15.
B Ruskin  J M Greene  M R Green 《Cell》1985,41(3):833-844
The excised introns of pre-mRNAs and intron-containing splicing intermediates are in a lariat configuration in which the 5' end of the intron is linked by a 2'-5' phosphodiester bond (RNA branch) to a single adenosine residue near the 3' end of the intron. To determine the role of the specific sequence surrounding the RNA branch, we have mutated the branch point sequence of the human beta-globin IVS1. Pre-mRNAs lacking the authentic branch point sequence are accurately spliced in vitro; processing of the mutant pre-mRNAs generates RNA lariats due to the activation of cryptic branch points within IVS1. The cryptic branch points always occur at adenosine residues, but the sequences surrounding the branched nucleotide vary. Regardless of the type of mutation or the sequences remaining within IVS1, the cryptic branch points are 22 to 37 nucleotides upstream of the 3' splice site. These results suggest that RNA branch point selection is primarily based on a mechanism that measures the distance from the 3' splice site.  相似文献   

16.
The sequence of the cloned Tetrahymena ribosomal RNA intervening sequence (IVS) was altered at the site to which circularization normally occurs. The alterations caused circularization to shift to other sites, usually a nearby position which followed three pyrimidines. While a tripyrimidine sequence was the major determinant of a circularization site, both location of a sequence and local secondary structure may influence the use of that sequence. For some constructs circularization appeared to occur at the position following the 5' G, the nucleotide added to the IVS during its excision. Portions of the internal guide sequence (IGS), proposed to interact with the 3'exon were deleted without preventing exon ligation. Thus if the IGS-3'exon interaction exists, it is not essential for splicing in vitro.  相似文献   

17.
18.
Expression of a beta thalassemia gene with abnormal splicing.   总被引:3,自引:1,他引:2  
Expression of a cloned human beta thalassemia gene with a single base change at position 5 of IVS 1 has been analyzed 48 hours after transfer of the gene into HeLa cells (transient expression). Little or no normal beta globin mRNA accumulates in the presence of the abnormal beta gene in contrast to significantly more normal beta mRNA produced with other mutations at this same position. By contrast, large amounts of an abnormal beta globin mRNA are present; this is due to the use of a cryptic 5' splice site in exon 1 rather than the normal 5' splice site of IVS 1. The results indicate the variability of the effect on RNA splicing of different single base defects within IVS.  相似文献   

19.
20.
Ribonucleoprotein complex formation during pre-mRNA splicing in vitro.   总被引:36,自引:9,他引:27       下载免费PDF全文
The ribonucleoprotein (RNP) structures of the pre-mRNA and RNA processing products generated during in vitro splicing of an SP6/beta-globin pre-mRNA were characterized by sucrose gradient sedimentation analysis. Early, during the initial lag phase of the splicing reaction, the pre-mRNA sedimented heterogeneously but was detected in both 40S and 60S RNP complexes. An RNA substrate lacking a 3' splice site consensus sequence was not assembled into the 60S RNP complex. The two splicing intermediates, the first exon RNA species and an RNA species containing the intron and the second exon in a lariat configuration (IVS1-exon 2 RNA species), were found exclusively in a 60S RNP complex. These two splicing intermediates cosedimented under a variety of conditions, indicating that they are contained in the same RNP complex. The products of the splicing reaction, accurately spliced RNA and the excised IVS1 lariat RNA species, are released from the 60S RNP complex and detected in smaller RNP complexes. Sequence-specific RNA-factor interactions within these RNP complexes were evidenced by the preferential protection of the pre-mRNA branch point from RNase A digestion and protection of the 2'-5' phosphodiester bond of the lariat RNA species from enzymatic debranching. The various RNP complexes were further characterized and could be distinguished by immunoprecipitation with anti-Sm and anti-(U1)RNP antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号