首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim BY  Kang DO  Oh WK  Kim JH  Choi YK  Jang JS  Suh PG  Ryu SH  Mheen TI  Ahn JS 《FEBS letters》2000,472(1):45-49
To directly define the role of phospholipase Cgamma1 (PLCgamma1) in NF-kappaB activation, NF-kappaB promoted luciferase reporter gene plasmid (pNF-kappaB-Luc) was transfected into rat-3Y1 fibroblasts that overexpress whole PLCgamma1 (PLCgamma1-3Y1), src homology domains SH2-SH2-SH3 of PLCgamma1 (SH223-3Y1) and v-src (Src-3Y1). Transient transfection with pNF-kappaB-Luc remarkably increased the luciferase activity in all three transformants compared with normal rat-3Y1 cells. Pretreatment with inhibitors of protein tyrosine kinase reduced this increase in luciferase activity, but U73122 (a PLC inhibitor) did not. While PD98059, an inhibitor of mitogen activated protein kinase (MAPK), significantly reduced the luciferase activity, there was no effect by wortmannin and Ro-31-8220, inhibitors of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC), respectively. This study shows a direct evidence that the SH2-SH2-SH3 region of PLCgamma1 contributes to the NF-kappaB signaling and that MAPK, but not PI3K and PKC, is involved in SH2-SH2-SH3 mediated NF-kappaB activation in these cells.  相似文献   

2.
The pleckstrin homology (PH) domain is a small motif for membrane targeting in the signaling molecules. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal and a split PH domain. Here we report studies on the interaction of the PH domain of PLC-gamma1 with translational elongation factor (EF)-1alpha, which has been shown to be a phosphatidylinositol 4-kinase activator. By pull-down of cell extract with the glutathione S-transferase (GST) fusion proteins with various domains of PLC-gamma1 followed by peptide sequence analysis, we identified EF-1alpha as a binding partner of a split PH domain of PLC-gamma1. Analysis by site-directed mutagenesis of the PH domain revealed that the beta2-sheet of a split PH domain is critical for the interaction with EF-1alpha. Moreover, Dot-blot assay shows that a split PH domain specifically binds to phosphoinositides including phosphatidylinositol 4-phosphate and phosphatidylinositol 4, 5-bisphosphate (PIP(2)). So the PH domain of PLC-gamma1 binds to both EF-1alpha and PIP(2). The binding affinity of EF-1alpha to the GST.PH domain fusion protein increased in the presence of PIP(2), although PIP(2) does not bind to EF-1alpha directly. This suggests that EF-1alpha may control the binding affinity between the PH domain and PIP(2). PLC-gamma1 is substantially activated in the presence of EF-1alpha with a bell-shaped curve in relation to the molar ratio between them, whereas a double point mutant PLC-gamma1 (Y509A/F510A) that lost its binding affinity to EF-1alpha shows basal level activity. Taken together, our data show that EF-1alpha plays a direct role in phosphoinositide metabolism of cellular signaling by regulating PLC-gamma1 activity via a split PH domain.  相似文献   

3.
Kim MJ  Chang JS  Park SK  Hwang JI  Ryu SH  Suh PG 《Biochemistry》2000,39(29):8674-8682
A recent report that microinjection of the SH3 domain of PLC-gamma1 could induce DNA synthesis raised the functional importance of the SH3 domain of PLC-gamma1 in mitogenic signaling. In this report, we provide evidence that SOS1, a p21Ras-specific guanine nucleotide exchange factor, directly binds to the SH3 domain of PLC-gamma1, and that the SH3 domain of PLC-gamma1 is involved in SOS1-mediated p21Ras activation. SOS1 was coprecipitated with the GST-fused SH3 domain of PLC-gamma1 in vitro. The interaction between SOS1 and the PLC-gamma1 SH3 domain is mediated by direct physical interaction. The carboxyl-terminal proline-rich domain of SOS1 is involved in the interaction with the PLC-gamma1 SH3 domain. Moreover, PLC-gamma1 could be co-immunoprecipitated with SOS1 antibody in cell lysates. From transient expression studies, we could demonstrate that the SH3 domain of PLC-gamma1 is necessary for the association with SOS1 in vivo. Intriguingly, overexpression of the SH3 domain of PLC-gamma1, lipase-inactive PLC-gamma1, or wild-type PLC-gamma1 elevated p21Ras activity and ERK activity when compared with vector transfected cells. The PLC-gamma1 mutant lacking the SH3 domain could not activate p21Ras. p21Ras activities in cell lines overexpressing either PLC-gamma1 or the SH2-SH2-SH3 domain of PLC-gamma1 were elevated about 2-fold compared to vector transfected cells. This study is the first to demonstrate that the PLC-gamma1 SH3 domain enhances p21Ras activity, and that the SH3 domain of PLC-gamma1 may be involved in the SOS1-mediated signaling pathway.  相似文献   

4.
Since the biological role of phospholipase C (PLC) gamma1 in neuronal differentiation still barely understood, here, we report that overexpression of PLC gamma1 inhibits neurite outgrowth and prolonged proliferation ability of PLC gamma1 contribute to the alteration of cell cycle regulatory proteins, subsequently exiting from cell growth arrest. Deletion of the SH3 or the entire SH223 domains, but not deletion of the N-SH2 or both the N-SH2 and C-SH2 domains expressing cells abolishes the differentiation-inhibitory effects of PLC gamma1, displaying depression of PCNA and elevation of cyclin D1. Moreover, these cells declined CDK1 and CDK2 expression and increased p21WAF-1, accompanying with G2/M accumulation. Some antiproliferative reagents are able to restore neurite outgrowth in PLC gamma1 cells, showing G2/M arrest. Our findings suggest that the proliferation activity of PLC gamma1 via its SH3 domain may be coupled with the flight from growth arrest by NGF, thereby inhibiting neuronal differentiation.  相似文献   

5.
In order to examine physiological function of the SH2/SH3 region of phospholipase C-gamma (Z region), we independently expressed cDNA fragments corresponding to the SH2/SH3 region of PLC-gamma 1 and PLC-gamma 2 in Escherichia coli. Although these recombinant proteins were recovered in particulate fractions by centrifugation of cell extracts, they were successfully solubilized by guanidium hydrochloride and then purified to homogeneity by heparin column chromatography. The molecular mass of the proteins was 45 kDa (derived from PLC-gamma 1 and designated as rP45Z) and 38 kDa (derived from PLC-gamma 2 and designated as rP38Z), which was consistent with that as expected from inserted cDNA. We determined the effect of purified rP45Z or rP38Z on PIP2-hydrolyzing activity of either PLC-gamma 1 or PLC-gamma 2 and found that these proteins strongly suppressed the rate of PLC-dependent PIP2-hydrolysis. Furthermore, both rP45Z and rP38Z were phosphorylated at tyrosine residue by epidermal growth factor receptors and their inhibitory effect on PIP2-hydrolysis was significantly decreased by this phosphorylation. These results indicate that the Z region might be involved in autoregulation of PLC-gamma as intrinsic negative regulator.  相似文献   

6.
The v-Src SH3 domain binds phosphatidylinositol 3''-kinase.   总被引:18,自引:9,他引:18       下载免费PDF全文
Fibroblasts transformed by v-src or by related oncogenes encoding activated tyrosine kinases contain elevated levels of polyphosphoinositides with phosphate at the D-3 position of the inositol ring, as a result of the activation of phosphatidylinositol (PI) 3'-kinase. v-src-transformed cells also contain increased levels of PI 3'-kinase activity immunoprecipitable with anti-phosphotyrosine antibodies; furthermore, PI 3'-kinase can be detected in association with the v-Src tyrosine kinase. To identify regions of v-Src that can interact with PI 3'-kinase, the v-Src SH2 and SH3 domains were expressed in bacteria and incubated with lysates of normal chicken embryo fibroblasts. In vitro, the v-Src SH3 domain, but not the SH2 domain, bound PI 3'-kinase in lysates of uninfected chicken embryo fibroblasts. Substitutions of two highly conserved SH3 residues implicated in ligand binding abolished the ability of the v-Src SH3 domain to associate with PI 3'-kinase. Furthermore, the v-Src SH3 domain bound in vitro to the amino-terminal region of the p85 alpha subunit of PI 3'-kinase. These results suggest that the v-Src SH3 domain may mediate an interaction between the v-Src tyrosine kinase and PI 3'-kinase, by direct binding to p85.  相似文献   

7.
Both phospholipase (PL) C-gamma1 and Akt (protein kinase B; PKB) are signaling proteins that play significant roles in the intracellular signaling mechanism used by receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR). EGFR activates PLC-gamma1 directly and activates Akt indirectly through phosphatidylinositol 3-kinase (PI3K). Many studies have shown that the PLC-gamma1 pathway and PI3K-Akt pathway interact with each other. However, it is not known whether PLC-gamma1 binds to Akt directly. In this communication, we identified a novel interaction between PLC-gamma1 and Akt. We demonstrated that the interaction is mediated by the binding of PLC-gamma1 Src homology (SH) 3 domain to Akt proline-rich motifs. We also provide a novel model to depict how the interaction between PLC-gamma1 SH3 domain and Akt proline-rich motifs is dependent on EGF stimulation. In this model, phosphorylation of PLC-gamma1 Y783 by EGF causes the conformational change of PLC-gamma1 to allow the interaction of its SH3 domain with Akt proline-rich motifs. Furthermore, we showed that the interaction between PLC-gamma1 and Akt resulted in the phosphorylation of PLC-gamma1 S1248 by Akt. Finally, we showed that the interaction between PLC-gamma1 and Akt enhanced EGF-stimulated cell motility.  相似文献   

8.
The regulatory domains of Src family kinases SH3 and SH2 suppress Src activity when bound to the catalytic domain. Here, the isolated SH3-SH2 fragment from the Src family member Fyn (FynSH32) is studied by NMR. The properties of this fragment are expected to be similar to the domains in the active state, where they are dissociated from the catalytic domain. Crosscommunication between SH3 and SH2 of FynSH32, measured by chemical shift perturbation, was found to be small. Diffusion and alignment anisotropy measurements showed that SH3 and SH2 of peptide-bound FynSH32 are significantly coupled but still exhibit some interdomain flexibility. The observed average domain orientation indicates that a large SH3-SH2 domain closure is required to reach the inactive state. The implications of these results for Src regulation are discussed.  相似文献   

9.
Higher plant proteins immunologically related to the animal substrate adhesion molecule vitronectin have recently been observed and implicated in a variety of biological processes, such as plasma membrane-cell wall adhesion, pollen tube extension, and bacterium-plant interaction. We provide evidence that, similar to vitronectin, one of these proteins, PVN1 (plant vitronectin-like 1), isolated from 428 mM NaCl-adapted tobacco cells binds to glass surfaces an heparin. PVN1 was isolated by glass bead affinity chromatography. Isolated PVN1 has adhesive activity based on results from a baby hamster kidney cell-spreading assay. This plant adhesion protein was detected in all tissues examined but was most abundant in roots and salt-adapted cultured cells. Immunogold labeling indicated that PVN1 is localized in the cell wall of cortical and transmitting tissue cells of pollinated mature styles. A partial amino acid sequence of PVN1 revealed no similarity with vitronectin but, instead, was nearly identical to the translational elongation factor-1 alpha (EF-1 alpha). A clone isolated by screening a tobacco cDNA expression library with anti-PVN1 encoded a protein with greater than 93% identity to sequences of EF-1 alpha from plants of numerous species. Immunological cross-reactivity between tobacco PVN1 and EF-1 alpha as well as the reaction between the EF-1 alpha antibody and the 65- and 75-kD vitronectin-like proteins of a fucoidal alga supported the conclusion that the plant extracellular adhesion protein PVN1 is related to EF-1 alpha.  相似文献   

10.
11.
The persistence of covalently closed circular (ccc) DNA of Hepatitis B virus (HBV) in liver cells is believed to be the major reason for relapse after completion of HBV antiviral therapy. Up to now, there is no sensitive method to quantify cccDNA in infected liver cells. We designed a set of primers to specifically amplify DNA fragments from HBV cccDNA but not from viral genomic DNA. A good linear range was obtained when 100-10(7) copies of HBV cccDNA were used as template in the quantitative real-time PCR. Not only is this method rapid, economical, highly sensitive, it can be used to monitor HBV cccDNA in infected human liver biopsies and to guide patients undergoing long-term anti-HBV therapy.  相似文献   

12.
Translocation of phospholipase C-γ1 is essential for its function in response to growth factors. However, in spite of recent progress, the phospholipase C-γ1 translocation pattern and the molecular mechanism of the translocation are far from fully understood. Contradictory results were reported as to which domain, PH or SH2, controls the epidermal growth factor-induced translocation of phospholipase C-γ1. In this communication, we studied epidermal growth factor-induced translocation of phospholipase C-γ1 by using comprehensive approaches including biochemistry, indirect fluorescence and live fluorescence imaging. We provided original evidence demonstrating that: (i) endogenous phospholipase C-γ1, similar to YFP-tagged phospholipase C-γ1, translocated to endosomes following its initial translocation from cytosol to the plasma membrane in response to epidermal growth factor; (ii) phospholipase C-γ1 remained phosphorylated in endosomes, but phospholipase C-γ1 activity is not required for its translocation, which suggests a signaling role for phospholipase C-γ1 in endosomes; (iii) the PH domain was not required for the initial translocation of phospholipase C-γ1 from cytosol to the plasma membrane, but it stabilizes phospholipase C-γ1 in the membrane at a later time; (iv) the function of the phospholipase C-γ1 PH domain in stabilizing phospholipase C-γ1 membrane association is very important in maintaining the activity of phospholipase C-γ1; and (v) the role of the PH domain in phospholipase C-γ1 membrane association and activation is dependent on PI3K activity. We conclude that the phospholipase C-γ1 SH2 and PH domains coordinate to determine epidermal growth factor-induced translocation and activation of phospholipase C-γ1.  相似文献   

13.
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.  相似文献   

14.
Xie Z  Bikle DD 《Steroids》2001,66(3-5):339-345
Phospholipase C-gamma1 (PLC-gamma1) is the most abundant member of the phospholipase C family expressed in human keratinocytes. PLC-gamma1 is induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) in normal keratinocytes via a DR6-type vitamin D responsive element. This regulation is not observed in transformed keratinocytes. The role of PLC-gamma1 in mediating 1alpha,25(OH)(2)D(3) and calcium-regulated differentiation was then tested. Both specific PLC inhibitors and antisense constructs which selectively block PLC-gamma1 production prevented 1alpha,25(OH)(2)D(3) and calcium from inducing markers of differentiation such as involucrin and transglutaminase. These studies demonstrate that PLC-gamma1 induction by 1alpha,25(OH)(2)D(3) is critical to the ability of this hormone to regulate keratinocyte differentiation.  相似文献   

15.
The chicken CT10 virus oncogene product, P47gag-crk, contains SH2/SH3 domains that have been identified as conserved domains among proteins involved in signal transduction. We studied the functional similarity of the SH2/SH3 domains by replacing those of v-Crk with those of phosphatidylinositol-specific phospholipase C-gamma, v-Src, or c-Src. The transforming activity of v-Crk was partially retained in a mutant with a v-Src SH3 domain but not in the other mutants with heterologous SH2/SH3 domains. Mutant viruses with Crk-SH2/SH2' domains induced tyrosine phosphorylation of cellular proteins, but mutants with phosphatidylinositol-specific phospholipase C-gamma or Src SH2/SH2' domains did not. However, the mutant proteins with heterologous SH2/SH2' regions were able to weakly associate with some phosphotyrosine-containing proteins in vitro. These results indicate that in the context of the P47gag-crk structure, the requirement of Crk-SH2/SH3 is more stringent for its activity to induce cell transformation than to cause phosphorylation of cellular proteins. The substitution with heterologous sequences least perturbs the capacity to bind phosphotyrosine-containing proteins. In each case, the SH3 domain is more flexible to substitution than is the SH2 domain.  相似文献   

16.
17.
The two SH2 (Src homology domain 2) domains present in phospholipase C-gamma1 (PLC-gamma1) were assayed for their capacities to recognize the five autophosphorylation sites in the epidermal growth factor receptor. Plasmon resonance and immunological techniques were employed to measure interactions between SH2 fusion proteins and phosphotyrosine-containing peptides. The N-SH2 domain recognized peptides in the order of pY1173 > pY992 > pY1068 > pY1148 > pY1086, while the C-SH2 domain recognized peptides in the order of pY992 > pY1068 > pY1148 > pY1086 and pY1173. The major autophosphorylation site, pY1173, was recognized only by the N-SH2 domain. Contributions of the N-SH2 and C-SH2 domains to the association of the intact PLC-gamma1 molecule with the activated epidermal growth factor (EGF) receptor were assessed in vivo. Loss of function mutants of each SH2 domain were produced in a full-length epitope-tagged PLC-gamma1. After expression of the mutants, cells were treated with EGF and association of exogenous PLC-gamma1 with EGF receptors was measured. In this context the N-SH2 is the primary contributor to PLC-gamma1 association with the EGF receptor. The combined results suggest an association mechanism involving the N-SH2 domain and the pY1173 autophosphorylation site as a primary event and the C-SH2 domain and the pY992 autophosphorylation site as a secondary event.  相似文献   

18.
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells. PLC-gamma1 and beta-tubulin colocalized in the perinuclear region in COS-7 cells and cotranslocated to the plasma membrane upon agonist stimulation. Membrane-targeted translocation of depolymerized tubulin by agonist stimulation was also supported by immunoprecipitation analyses. The phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolyzing activity of PLC-gamma1 was substantially increased in the presence of purified tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that beta-tubulin activates PLC-gamma1. Furthermore, indirect immunofluorescent microscopy showed that PLC-gamma1 was highly concentrated in mitotic spindle fibers, suggesting that PLC-gamma1 is involved in spindle fiber formation. The effect of PLC-gamma1 in microtubule formation was assessed by overexpression and silencing PLC-gamma1 in COS-7 cells, which resulted in altered microtubule dynamics in vivo. Cells overexpressing PLC-gamma1 showed higher microtubule densities than controls, whereas PLC-gamma1 silencing with small interfering RNAs led to decreased microtubule network densities as compared with control cells. Taken together, our results suggest that PLC-gamma1 and beta-tubulin transmodulate each other, i.e. that PLC-gamma1 modulates microtubule assembly by beta-tubulin, and beta-tubulin promotes PLC-gamma1 activity.  相似文献   

19.
Upon binding to its cell surface receptor, platelet-derived growth factor (PDGF) causes the tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) and stimulates the production of diacylglycerol and inositol 1,4,5-triphosphate. We showed that following stimulation by PDGF, rat-2 cells overexpressing PLC-gamma 1 display an increase in the levels of both tyrosine-phosphorylated PLC-gamma 1 and inositol phosphates compared with the parental rat-2 cells. This increased responsiveness to PDGF is a direct effect of PLC-gamma 1 overexpression, as a cell line expressing similar levels of an enzymatically inactive point mutant of PLC-gamma 1, PLC-gamma 1 335Q, did not show elevated inositol phosphate production in response to PDGF. Hematopoietic cells express PLC-gamma 2, a PLC isoform that is closely related to PLC-gamma 1. When rat-2 cells overexpressing PLC-gamma 2 were treated with PDGF, an increase in both the tyrosine phosphorylation and the in vivo activity of PLC-gamma 2 was observed. Aluminum fluoride (AIF4-), a universal activator of PLC linked to G-proteins, did not produce an increase in the levels of inositol phosphates in either of the overexpressing cell lines compared with parental rat-2 cells, demonstrating that PLC-gamma isoforms respond specifically to a receptor with tyrosine kinase activity.  相似文献   

20.
Although the precise definition for a microtubule-associated protein (MAP) has been the subject of debate, elongation factor-1alpha (EF-1alpha) fits the most basic criteria for a MAP [Durso and Cyr, 1994a]. It binds, bundles, stabilizes, and promotes the assembly of microtubules in vitro, and localizes to plant microtubule arrays in situ. In this study, the in vitro and in vivo association of EF-1alpha with microtubules was further investigated. Analysis of the in vitro binding data for EF-1alpha and microtubules indicates that EF-1alpha binds cooperatively to the microtubule lattice. In order to investigate the interaction of EF-1alpha with microtubules in vivo, GFP fusions to EF-1alpha or to EF-1alpha truncates were transiently expressed in living plant cells. Using this method, two putative microtubule-binding domains on EF-1alpha were identified: one in the N-terminal domain I and one in the C-terminal domain III. The binding of domain I to microtubules in vivo, like the binding of full-length EF-1alpha, is conditional, and requires incubation in weak, lipophilic organic acids. The binding of domain III to microtubules in vivo, however, is not conditional, and occurs under normal cellular regimes. Furthermore, domain III stabilizes cortical microtubules as determined by their resistance to the anti-microtubule herbicide, oryzalin. Because the accumulation of EF-1alpha onto microtubules is unconditional in the absence of domain I, we hypothesize that domain I negatively regulates the accumulation of EF-1alpha onto microtubules in vivo. This hypothesis is discussed in terms of possible regulatory mechanisms that could affect the accumulation of EF-1alpha onto microtubules within living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号