共查询到20条相似文献,搜索用时 31 毫秒
1.
Shimizu H Osanai A Sakamoto K Inaoka DK Shiba T Harada S Kita K 《Journal of biochemistry》2012,151(6):589-592
In the anaerobic respiratory chain of the parasitic nematode Ascaris suum, complex II couples the reduction of fumarate to the oxidation of rhodoquinol, a reverse reaction catalyzed by mammalian complex II. In this study, the first structure of anaerobic complex II of mitochondria was determined. The structure, composed of four subunits and five co-factors, is similar to that of aerobic complex II, except for an extra peptide found in the smallest anchor subunit of the A. suum enzyme. We discuss herein the structure-function relationship of the enzyme and the critical role of the low redox potential of rhodoquinol in the fumarate reduction of A. suum complex II. 相似文献
2.
3.
L L Clancy G S Rao B C Finzel S W Muchmore D R Holland K D Watenpaugh H M Krishnamurthy R M Sweet P F Cook B G Harris 《Journal of molecular biology》1992,226(2):565-569
The malic enzyme from muscle mitochondria of the parasitic nematode Ascaris suum is a tetramer of 65 kDa monomers that catalyzes the oxidative decarboxylation of malate to pyruvate and CO2 with NAD cofactor as oxidant. This malic enzyme is critical to the nematode for muscle function under anaerobic conditions. Unlike mammalian versions of the enzyme such as that found in rat liver, which require NADP as cofactor, the nematode version is an NAD-dependent enzyme. We report the crystallization of samples of the nematode enzyme at room temperature from pH 7.5 solutions of polyethylene glycol 4000 containing magnesium sulfate, NAD and sodium tartronate. Immediately upon mixing of protein and precipitant solutions, a marked precipitation of the protein occurs. Out of this precipitate, crystals appear almost immediately, most commonly in a truncated cube form that can grow to 0.5 to 0.7 mm on a cube edge in two to three days. The crystals are trigonal, space group P3(1)21 or its enantiomer, with a = b = 131.2(7) A, c = 152.6(9) A, and two monomers per asymmetric unit. Fresh crystals diffract X-radiation from a synchrotron source (lambda = 0.95 A) to about 3.0 A resolution. Rotational analysis of Patterson functions indicates that the malic enzyme tetramer has 222 symmetry. 相似文献
4.
A Lesoon P R Komuniecki R Komuniecki 《Comparative biochemistry and physiology. B, Comparative biochemistry》1990,95(4):811-815
1. Catalase activity was partially purified from body wall muscle of the parasitic nematode, Ascaris suum, and was similar to catalases isolated from mammalian tissues. It exhibited a broad pH optimum and was unaffected by 2 mM ethylenediaminetetra-acetate. In contrast, it was inhibited reversibly by 1 mM cyanide and irreversibly by prior incubation in 40 mM 3-amino-1:2:4-triazole for 1 hr or heating at 80 degrees C for 15 min. 2. Catalase activity was highest in the unembryonated "egg" and decreased dramatically as development proceeded. 3. Catalase activity in adult body wall muscle was similar to that in rat skeletal muscle, but dramatically lower than that in rat liver. Catalase activity was barely detectable in A. suum testis. 4. Cytochrome-c peroxidase activity did not appear to be present in adult A. suum muscle mitochondria. 相似文献
5.
The cDNA encoding fumarase, an enzyme catalyzing reversible hydration of fumarate to L-malate, from the parasitic roundworm Ascaris suum, has been cloned, sequenced, over-expressed in Escherichia coli, and purified. The single open reading frame translates into a protein of 50,502Da containing 467 amino acids. It shows 82, 77, and 58% identity with Caenorhabditis elegans, human, and E. coli fumC fumarases, respectively. The A. suum fumarase shows the signature sequence motif (GSSIMPGKVNPTQCE), which defines not only the class II fumarase family but also a much broader superfamily of proteins containing GSSxMPxKxNPxxxE motif. The coding region was cloned into pET101D-directional TOPO expression vector and transformed into E. coli BL21 Star (DE3). The protein after induction was expressed at high levels, almost 10% of the soluble protein, purified to near homogeneity, and appears identical to the enzyme purified from Ascaris suum. 相似文献
6.
Southern hybridization data suggest a large actin gene family in Ascaris suum. Our genomic reconstruction experiment indicated that it consists of 50-75 members. Polymorphism was uncovered in the actin genes or in their surrounding sequences. From the genomic library 5 nonoverlapping actin clones were isolated and characterized. 相似文献
7.
8.
The acidic glycolipid fraction (AF) of the porcine, parasitic nematode,
Ascaris suum , consisted of two subfractions. The major component AF II
reacted with orcinol-sulfuric acid and molybdate, while the minor component
AF I gave a positive reaction with azure-A, a cationic dye specific for
sulfatides. Sugar constituent analysis, methanolysis, methylation analysis,
matrix-assisted laser desorption/ionization time- of-flight mass
spectrometry, liquid secondary-ion mass spectrometry, and gas-liquid
chromatography/mass spectrometry specified AF II to be an unusual
phosphoinositolglycosphingolipid (Galalpha1-Ins-P-1ceramide) and the minor
component AF I to be a 3-sulfogalactosylcerebroside (HSO3-
3Galss1-1ceramide). The ceramide moiety of both components consisted of
lignoceric (C24:0) and cerebronic (C24h:0) acids and mainly C17 iso-
branched sphingosine. Immunohistochemical localization studies of the
glycolipid-bound antigenic determinants with a polyclonal antiserum against
AF II and an anti-sulfatide monoclonal antibody against AF I revealed the
presence of the AF II-epitope in the intestine, whereas the AF I-epitope
was found in the hypodermis, contractile zone of somatic muscle cells and
the external musculature of the uterus. To our knowledge, this is the first
report of the presence of a sulfatide in an invertebrate.
相似文献
9.
R Komuniecki R Rhee D Bhat E Duran E Sidawy H Song 《Archives of biochemistry and biophysics》1992,296(1):115-121
The pyruvate dehydrogenase complex (PDC) from muscle of the adult parasitic nematode Ascaris suum plays a unique role in its anaerobic mitochondrial metabolism. Resolution of the intact complex in high salt dissociates the pyruvate dehydrogenase subunit but leaves the dihydrolipoyl dehydrogenase subunit (E3) and two other proteins with apparent M(r)s of 45 and 43 kDa bound to the dihydrolipoyl transacetylase (E2) core. These proteins are not observable on Coomassie brilliant blue-stained gels of other eukaryotic PDCs, but the 45-kDa protein is similar in apparent M(r), pI, and sensitivity to trypsin to the Kb subunit of the bovine kidney PDH alpha kinase. Acetylation of the ascarid PDC with [2-14C]pyruvate under conditions designed to maximize the incorporation of label into protein yielded only a single radiolabeled subunit, E2. These results confirm earlier reports that the ascarid PDC lacks protein X, an integral component recently identified in other eukaryotic PDCs. About 1.6 to 1.8 mol of 14C was incorporated/mole of E2, suggesting that the ascarid E2 contained two lipoly-bearing domains. Domain mapping of the 14C-acetylated ascarid E2 by limited tryptic digestion identified two lipoyl-bearing fragments with apparent M(r)s of 50 and 34 kDa and two core fragments with apparent M(r)s of 46 and 30 kDa. The ascarid E2 domain structure appears to be similar to that of other E2s. However, it appears that the subunit-binding domain (E2B) of the ascarid E2 may be significantly larger or be flanked by larger than normal interdomain regions. An enlarged E2B domain may be necessary to accommodate the additional binding of E3 to the E2 subunit in the ascarid complex, in the absence of protein X. 相似文献
10.
D Smart C Shaw W J Curry C F Johnston L Thim D W Halton K D Buchanan 《Biochemical and biophysical research communications》1992,187(3):1323-1329
Extensive immunoreactivity (IR) towards a hexapeptide (sequence KGQELE), which flanks the C-terminus of the pancreastatin sequence in rat chromogranin A (CGA), is found throughout the nervous system of the nematode parasite Ascaris suum. The peptide IR was purified from the gonoduct of the parasite and found to have the sequence TKQELE. This peptide, designated TE-6, has some C-terminal homology with several regions of the CGA molecule. However, TE-6 was the only peptide isolated suggesting that either the nematode does not possess CGA, or that the -ELE regions of parasite CGA-like peptides which would be larger than TE-6 are not accessible to the antiserum in RIA, or are not being successfully extracted from the parasite. The N-terminus of TE-6 has little homology with any of the sequences preceding -ELE regions in CGA. This, and the fact that the tissue from which TE-6 was isolated does not contain IR towards another, highly conserved, region of the CGA molecule (WE-14) suggests that TE-6 may belong to a new class of regulatory peptide unrelated to CGA. 相似文献
11.
Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. 总被引:6,自引:0,他引:6 下载免费PDF全文
The quaternary structure of erythrocruorin from the nematode Ascaris suum was studied. The native protein had a sedimentation coefficient, at a protein concentration of 1 mg/ml, of 11.6 +/- 0.3 S and an Mr, as determined by sedimentation equilibrium, of 332,000 +/- 17,000. SDS/polyacrylamide-gel electrophoresis gave one band with a mobility corresponding to an Mr of 43,000 +/- 2000. The Mr of the polypeptide chain was determined to be 41,600 +/- 1,500 by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol. Cross-linking with glutaraldehyde followed by SDS/polyacrylamide-gel electrophoresis yielded a maximal number of eight bands. The haem content of Ascaris erythrocruorin was observed to vary from one preparation to another. This finding was shown to be due to non-realization of the full binding capacity for haem. By titration with haemin, the haem content was found to attain a maximal value of 2.86 +/- 0.14%, corresponding to a minimal Mr per haem group of 21,000 +/- 1,000. Our findings indicate that Ascaris suum erythrocruorin is composed of eight identical polypeptide chains, carrying two haem sites each. 相似文献
12.
《Parasitology international》2016,65(2):113-120
We previously reported that adult Ascaris suum possesses NADH-metmyoglobin and NADH-methaemoglobin reductase systems that are located in the cells of the body wall and in the extracellular perienteric fluid, respectively, which helps them adapt to environmental hypoxia by recovering the differential functions of myoglobin and haemoglobin. A. suum cytochrome b5, an adult-specific secretory protein and an essential component of the NADH-metmyo (haemo) globin reductase system, has been extensively studied, and its unique nature has been determined. However, the relationship between A. suum cytochrome b5 and the canonical cytochrome b5 proteins, from the free-living nematode Caenorhabditis elegans is unclear. Here, we have characterised four cytochrome b5-like proteins from C. elegans (accession numbers: CAB01732, CCD68984, CAJ58492, and CAA98498) and three from A. suum (accession numbers: ADY48796, ADY46277, and ADY48338) and compared them with A. suum cytochrome b5 in silico. Bioinformatic and molecular analyses showed that CAA98498 from C. elegans is equivalent of A. suum cytochrome b5, which was not expressed as a mature mRNA. Further, the CAA98498 possessed no secretory signal peptide, which occurs in A. suum cytochrome b5 precursor. These results suggest that this free-living nematode does not need a haemoprotein such as the A. suum cytochrome b5 and highlight the crucial function of this A. suum adult-specific secretory cytochrome b5 in parasitic adaptation. 相似文献
13.
Phosphoenolpyruvate carboxykinase has been purified from homogenates of Ascaris suum muscle strips to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification is a three-step procedure which yields pure enzyme in milligram quantities with good yield. The subunit molecular weight of the Ascaris enzyme is between 75,000 and 80,000. The native molecular weight is 83,000 as determined by gel filtration. The kinetic constants for substrates of the carboxylation reaction were determined and compared to those measured for the avian liver enzyme. From kinetic studies it appears likely that two separate roles for divalent metal ions exist in the catalytic process. Studies conducted with Mn2+ or with micromolar concentrations of Mn2+, in the presence of millimolar concentrations of Mg2+ suggest that Mn2+ but not Mg2+ binds directly to and activates the enzyme while either Mn2+ or Mg2+ may bind to the nucleotide resulting in the metal-nucleotide complex. The metal-nucleotide is the active form of the substrate for the reaction. In the presence of Mg2+, an increase in the Mn2+ concentration results in a decrease in the Km for P-enolpyruvate suggesting a direct role for Mn2+ stimulation and regulation of activity. The concentrations of Mn2+ and Mg2+ in Ascaris muscle strips were determined by atomic absorption spectroscopy and support the proposed hypothesis of a specific Mn2+ activation of the enzyme. The nucleotides ATP and ITP act as competitive inhibitors against GTP with KI values of 0.50 and 0.75 mM, respectively. ITP is a competitive inhibitor against both IDP and P-enolpyruvate, suggesting overlapping binding sites for the two substrates on the enzyme. 相似文献
14.
Summary The intestinal epithelium of Ascaris suum consists of a single layer of tall columnar epithelial cells that rest on a thick basal membrane in contact with the pseudocoelomic cavity. Experiments were conducted on glutaraldehyde-fixed tissue to ascertain the nature of the electronegative charges associated with both the apical microvillar surface and basal membrane.A strong electronegative charge was demonstrated on the microvillar surface and basal membrane with ruthenium red and cationic ferritin staining. The ionic nature of ferritin binding was demonstrated with poly-L-lysine, a polycation that interacts with anionic groups on the membrane and thus blocks the subsequent binding of ferritin. Tissue thus treated was devoid of reaction product. Methylation with diazomethane completely abolished staining. Since the stronger acidic groups of sulfates or phosphates would not be protonated under the conditions employed in this study, and therefore susceptible to methylation, staining by ferritin is thought to be due to its interaction with carboxyl groups. Prior enzymatic treatment of tissue with neuraminidase or phospholipase C had no effect on subsequent ferritin binding. Tissue exposed to colloidal iron at various pH values showed maximal reactivity at a pH of 2.5 or above. Above pH 2.5, the dissociation of protons from free carboxyl groups of protein-bound amino-acid residues with pK's of 3.8 and 4.2 would be maximal, and the ionized carboxyl groups are then available to interact with iron micelles. These results suggest the presence of weaker acidic groups, such as the carboxyl groups of acidic amino acids or uronic acid residues. The stronger acidic groups of sialic acid and the esterified sulfate groups, if present, contribute only minimally to overall staining. These results demonstrate that a high electronegative charge density exists, despite the apparent lack of sialic acid. Staining is believed to be due to carboxyl groups of acidic amino acids and/or carboxyl groups or uronic acid residues.Part of this work was conducted at the Department of Zoology, Louisiana State University, Baton Rouge, Louisiana 相似文献
15.
The effects of the opiates morphine and morphine-6-glucuronide (M6G), the mu opioid receptor specific antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), and the general opiate antagonist naloxone on the latency of response to thermal stimulation were determined in the parasitic nematode Ascaris suum. Thermal detection and avoidance behaviors of the worms were evaluated with a tail flick analgesia meter using a modification of a technique employed for nociception experiments in rodents. Morphine and M6G were shown to have a dose dependent analgesic effect on A. suum's latency of response to heat with morphine being the most potent. The analgesic effect of morphine was reversed by naloxone but not CTOP. Neither naloxone nor CTOP was able to block the analgesia of M6G. CTOP but not naloxone had significant analgesic effects on its own. These findings are generally consistent with previous results on the effects of opiates and nitric oxide release from A. suum tissue. Apparently these nematodes possess opioid receptors that effect nociception. 相似文献
16.
Ralph E. Davis Antony O. W. Stretton 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1992,171(1):17-28
1. The close association of muscle and neurons in Ascaris suum makes it difficult to determine whether spikes recorded from nerve cords originate in muscle or neurons. We have developed criteria that distinguish muscle and neuronal activity. There are two categories of extracellular spikes. 2. The first category consists of spikes with a wide range of amplitudes, marked by large spikes. These spikes, which can be recorded over lateral muscle and over the dorsal and ventral nerve cords, are abolished when muscle is disrupted or removed, or when curare is applied. Large spikes are relatively infrequent, are correlated with intracellularly recorded muscle events, and respond to polarizations of motor neurons, implying that they originate in muscle. 3. The second spike category, small amplitude spikes, is exclusive to the ventral nerve cord, occurs more frequently than large spikes and displays patterned firing. Small spikes are not affected by muscle removal or by curare, and are correlated with motor neuronal post-synaptic potentials, but not with intracellularly recorded muscle events. We infer that they originate in neurons. 4. Low level activity recorded extracellularly over nerve cords may represent muscle activity due to tonic motor neuronal synaptic transmission. It responds to motor neuronal polarization and is suppressed by curare or muscle removal. 相似文献
17.
G A Homandberg R D Litwiller R J Peanasky 《Archives of biochemistry and biophysics》1989,270(1):153-161
The carboxypeptidase A inhibitor from Ascaris suum was isolated from aqueous extracts by affinity chromatography toward immobilized carboxypeptidase A. The amino acid sequence is DQVRKCLSDT10DCTNGEKCVQ20KNKICSTIVE30IQRCEKEHFT40IPCKSNNDCQ50VWAHEKICN K60LPWGL65 . The carboxypeptidase A inhibitor is not homologous with the chymotrypsin/elastase or trypsin inhibitors from Ascaris, but shows homology in a 9-residue internal sequence with the 37/39-residue carboxypeptidase inhibitors from tomato and potato. The carboxy-terminal 5 (4) residues in the three inhibitors are similar, suggesting a common mechanism of inhibition. 相似文献
18.
Disaccharidases from the gut of Ascaris suum were investigated to determine whether they were synthesized by the worm or whether they were host enzymes adsorbed to the worms' intestinal cells. Alpha-d-glucoside glucohydrolase (maltase) (EC 3.2.1.20), Beta-d-fructofuranoside fructohydrolase (invertase) (EC 3.2.1.26) and 1-glucohydrolase (trehalase) (EC 3.2.1.28) from Ascaris were studied in both a membrane (brush border)-bound and solubilized form with regard to temperature stability and pH optima. Data collected were compared to similar data on hog intestinal enzymes. Worm maltase and trehalase were relatively heat labile, whereas the hog enzymes were more stable to heat inactivation. Worm invertase was heat stable in comparison to the hog enzyme. The pH optima for Ascaris maltase and invertase were different from those of hog disaccharidases, whereas the pH optimum for trehalase from both parasite and host were similar. Tissue homogenates of second-stage larvae contained measurable maltase, but not sucrase, or trehalase activity. Results suggested that Ascaris intestinal disaccharidases represent three distinct enzymes of parasite rather than host origin. 相似文献
19.
Nagataki M Uda K Jarilla BR Tokuhiro S Wickramasinghe S Suzuki T Blair D Agatsuma T 《Journal of helminthology》2012,86(3):276-286
We amplified the cDNA coding for arginine kinase (AK) from the parasitic nematode Ascaris suum, cloned it in pMAL plasmid and expressed the enzyme as a fusion protein with the maltose-binding protein. The whole cDNA was 1260 bp, encoding 400 amino acids, and the recombinant protein had a molecular mass of 45,341 Da. Ascaris suum recombinant AK showed significant activity and strong affinity ( K(m)(Arg) = 0.126 mM) for the substrate L-arginine. It also exhibited high catalytic efficiency ( k(ca)/K(m)(Arg) = 352) comparable with AKs from other organisms. Sequence analysis revealed high amino acid sequence identity between A. suum AK and other nematode AKs, all of which cluster in a phylogenetic tree. However, comparison of gene structures showed that A. suum AK gene intron/exon organization is quite distinct from that of other nematode AKs. Phosphagen kinases (PKs) from certain parasites have been shown to be potential novel drug targets or tools for detection of infection. The characterization of A. suum AK will be useful in the development of strategies for control not only of A. suum but also of related species infecting humans. 相似文献
20.
Characterization and expression of a spliced leader RNA in the parasitic nematode Ascaris lumbricoides var. suum. 总被引:11,自引:2,他引:11 下载免费PDF全文
T W Nilsen J Shambaugh J Denker G Chubb C Faser L Putnam K Bennett 《Molecular and cellular biology》1989,9(8):3543-3547
The parasitic nematode Ascaris spp. contains a 22-nucleotide spliced-leader (SL) sequence identical to the trans-SL previously described in Caenorhabditis elegans and other nematodes. The SL comprises the first 22 nucleotides of a approximately 110-base RNA and is transcribed by RNA polymerase II. The SL RNA contains a trimethylguanosine cap and a consensus Sm binding site. Furthermore, the Ascaris SL RNA has the potential to adopt a secondary structure which is nearly identical to potential secondary structures of similar SL RNAs in C. elegans and Brugia malayi. 相似文献