首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Spectral Sensitivities of Wolf Spider Eyes   总被引:5,自引:5,他引:0       下载免费PDF全文
ERG's to spectral lights were recorded from all eyes of intact wolf spiders. Secondary eyes have maximum relative sensitivities at 505–510 nm which are unchanged by chromatic adaptations. Principal eyes have ultraviolet sensitivities which are 10 to 100 times greater at 380 nm than at 505 nm. However, two animals' eyes initially had greater blue-green sensitivities, then in 7 to 10 wk dropped 4 to 6 log units in absolute sensitivity in the visible, less in the ultraviolet. Chromatic adaptations of both types of principal eyes hardly changed relative spectral sensitivities. Small decreases in relative sensitivity in the visible with orange adaptations were possibly retinomotor in origin. Second peaks in ERG waveforms were elicited from ultraviolet-adapted principal eyes by wavelengths 400 nm and longer, and from blue-, yellow-, and orange-adapted secondary eyes by wavelengths 580 nm and longer. The second peaks in waveforms were most likely responses of unilluminated eyes to scattered light. It is concluded that both principal and secondary eyes contain cells with a visual pigment absorbing maximally at 505–510 nm. The variable absolute and ultraviolet sensitivities of principal eyes may be due to a second pigment in the same cells or to an ultraviolet-absorbing accessory pigment which excites the 505 nm absorbing visual pigment by radiationless energy transfer.  相似文献   

2.
Summary Microspectrophotometric examination of the visual receptors of the duck,Anas platyrhynchos, revealed four types of single cone containing visual pigments absorbing maximally at about 420 nm, 452 nm, 502 nm and 570 nm. A single population of double cones contained the P570 in both members. Rods absorbed maximally at 505 nm.Within the single cones, three types of oil droplet, acting as cut-off filters, were identified by the wavelength at which 50% transmission occurred, approximately 580, 515 and 450 nm. A further droplet, transparent throughout the visible spectrum, was also found in a small population of single cones. A fifth droplet type with a variable cutoff between 475–500 nm was located in the principal member of the double cones.The optical density of the anterior half of the eye, established by spectrophotometry, was used, in conjunction with the visual pigment and oil droplet combinations found within intact cones, to estimate the relative spectral sensitivities of the major cone types within the retina.  相似文献   

3.
Spectral sensitivities of jumping spider eyes   总被引:2,自引:0,他引:2  
Summary Spectral sensitivities of the anterior lateral, posterior lateral and anterior median eyes of the jumping spider,Menemerus confusus Boes. et Str. have been studied by recording electroretinograms (ERGs) and receptor potentials. The anterior and posterior lateral eyes have a single type of visual cell with a maximum spectral sensitivity at about 535–540 nm. The anterior median eye has four types of visual cells with maximum sensitivities at about 360, 480–500, 520–540 and 580 nm, respectively. The ERGs recorded from the optic nerve side (posterior part of the retina) were affected greatly by long wave chromatic light and those on the corneal side (anterior part of the retina) by short wave chromatic light, suggesting that each receptor layer contains a different photopigment.  相似文献   

4.
Fresh, frozen sections of the photoreceptor layer of the compound eye of the moth Galleria have been examined by microspectrophotometry, using 4 X 8 mum measuring beams that sampled from approximately two to four rhabdoms. The principal visual pigmen: absorbs maximally at 510 nm (P510), and on irradiation is converted to a thermally stable, pH-insensitive metarhodopsin with lambdamax at 484 nm (M484) and a 43% increase in molar extinction coefficient. Subsequently, short wavelength irradiation of the metarhodopsin photoregenerates some P510; but the absence of an isosbestic point in the cycle of spectral changes is consistent with the presence of smaller amounts of violet- or ultraviolet-sensitive visual pigment(s) that also are converted to a blue-absorb g metarhodopsin. Difference spectra for both P510 and M484 were measured, using hydroxylamine. The 484-nm metarhodopsin is reversibly converted to a form with lambdamax at 363 nm by high concentrations of glycerol. Dark regeneration of rhodopsin in vivo after several minutes exposure of thoroughly dark-adapted animals to full sunlight requires several days.  相似文献   

5.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

6.
Summary The absorption maxima ( max) of the visual pigments in the ommatidia ofNotonecta glauca were found by measuring the difference spectra of single rhabdomeres after alternating illumination with two different adaptation wavelengths. All the peripheral rhabdomeres contain a pigment with an extinction maximum at 560 nm. This pigment is sensitive to red light up to wavelengths > 700 nm. In a given ommatidium in the dorsal region of the eye, the two central rhabdomeres both contain one of two pigments, either a pigment with an absorption maximum in the UV, at 345 nm, or — in neighboring rhabdoms — a pigment with an absorption maximum at 445 nm. In the ventral part of the eye only the pigment absorbing maximally in the UV was found in the central rhabdomeres. The spectral absorption properties of various types of screening-pigment granules were measured.  相似文献   

7.
The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to light-independent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.  相似文献   

8.
The spectral sensitivities of single Limulus median ocellus photoreceptors have been determined from records of receptor potentials obtained using intracellular microelectrodes. One class of receptors, called UV cells (ultraviolet cells), depolarizes to near-UV light and is maximally sensitive at 360 nm; a Dartnall template fits the spectral sensitivity curve. A second class of receptors, called visible cells, depolarizes to visible light; the spectral sensitivity curve is fit by a Dartnall template with λmax at 530 nm. Dark-adapted UV cells are about 2 log units more sensitive than dark-adapted visible cells. UV cells respond with a small hyperpolarization to visible light and the spectral sensitivity curve for this hyperpolarization peaks at 525–550 nm. Visible cells respond with a small hyperpolarization to UV light, and the spectral sensitivity curve for this response peaks at 350–375 nm. Rarely, a double-peaked (360 and 530 nm) spectral sensitivity curve is obtained; two photopigments are involved, as revealed by chromatic adaptation experiments. Thus there may be a small third class of receptor cells containing two photopigments.  相似文献   

9.
Immunohistochemical evidence for multiple photosystems in box jellyfish   总被引:1,自引:0,他引:1  
Cubomedusae (box jellyfish) possess a remarkable visual system with 24 eyes distributed in four sensory structures termed rhopalia. Each rhopalium is equipped with six eyes: two pairs of pigment cup eyes and two unpaired lens eyes. Each eye type probably captures specific features of the visual environment. To investigate whether multiple types of photoreceptor cells are present in the rhopalium, and whether the different eye types possess different types of photoreceptors, we have used immunohistochemistry with a range of vertebrate opsin antibodies to label the photoreceptors, and electroretinograms (ERG) to determine their spectral sensitivity. All photoreceptor cells of the two lens eyes of the box jellyfish Tripedalia cystophora and Carybdea marsupialis displayed immunoreactivity for an antibody directed against the zebrafish ultraviolet (UV) opsin, but not against any of eight other rhodopsin or cone opsin antibodies tested. In neither of the two species were the pigment cup eyes immunoreactive for any of the opsin antibodies. ERG analysis of the Carybdea lower lens eyes demonstrated a single spectral sensitivity maximum at 485 nm suggesting the presence of a single opsin type. Our data demonstrate that the lens eyes of box jellyfish utilize a single opsin and are thus color-blind, and that there is probably a different photopigment in the pigment cup eyes. The results support our hypothesis that the lens eyes and the pigment cup eyes of box jellyfish are involved in different and specific visual tasks.  相似文献   

10.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

11.
Summary In the compound eye of the moth Antheraea polyphemus, three types of visual pigments were found in extracts from the retina and by microspectrophotometry in situ. The absorption maxima of the receptor pigment P and the metarhodopsin M are at (1) P 520–530 nm, M 480–490 nm; (2) P 460–480 nm, M 530–540 nm; (3) P 330–340 nm, M 460–470 nm. Their localization was investigated by electron microscopy on eyes illuminated with different monochromatic lights. Within the tiered rhabdom, constituted of the rhabdomeres of nine visual cells, the basal cell contains a blue-and the six medial cells have a greenabsorbing pigment. The two distal cells of most ommatidia also have the blue pigment; only in the dorsal region of the eye, these cells contain a UV-absorbing pigment, which constitutes a portion of only 5% of the visual pigment content within the entire retina. The functional significance of this distribution is discussed.  相似文献   

12.
Regulation of light flux by pupil mechanisms in the UV-sensitive superposition eye of owl-fly Ascalaphus macaronius (Neuroptera) was studied with a fast reflection microspectrophotometric technique. The spectral sensitivity of pupil reaction, which was calculated on the basis of changes of transient amplitude reflection, was almost identical with the one of Deilephila eye. This indicates that in spite of different life styles and spectral sensitivities of photoreceptors, pupil closing is triggered by the same photosensitive structure in both eyes. By measuring the spectra of reflected light from the Ascalaphus eye between 400 and 700 nm after different dark periods following light stimulation, it was established that the restoration of reflection was much faster in the red than in the blue spectral range. Based on this, we propose that two different pupil mechanisms with different spectral absorption characteristics are involved in light-flux regulation. Fast-reacting pupil is probably represented by screening pigment migration in the secondary pigment cells and a slow blue-absorbing system by the activity in primary pigment cells. The importance of two different pupils for the photoregeneration of visual pigment is discussed. Accepted: 1 October 1998  相似文献   

13.
Summary Spectral sensitivity of the lateral eyes of the isopodPorcellio scaber (wood louse) and the decapodsCallinectes sapidus (blue crab),Palaemonetes paludosus (Everglades prawn),Orconectes virilis, andO. immunis (crayfish) have been measured between 300 and 660 nm by determining the reciprocal number of photons required to evoke a constant size retinal action potential. Porcellio is maximally sensitive at 515 nm andCallinectes at 505 nm. Both species have a single pigment system, as spectral sensitivity is unchanged by red light adaptation. Palaemonetes appears to have a dichromatic color vision. Sensitivity of the dark-adapted eye is dominated by a receptor maximally sensitive at 550–555 nm, but red or yellow adaptation discloses a uv pigment with max at about 380 nm. Present evidence suggests the 555 and 380 nm pigments are located in different receptor cells. Orconectes has peak sensitivity at 565 nm, but under red light adaptation and close to the electroretinographic threshold a second sensitivity maximum appears at 425 nm. As in the prawn, these peaks seem to indicate the presence of a two-receptor color vision system.The corneas ofOrconectes, Callinectes, andHomarus (lobster) are relatively thick, and microspectrophotometric measurements show near ultraviolet absorption as well as the protein peak at 280 nm. By contrast,Palaemonetes andMusca (housefly), species with near ultraviolet receptors, have thinner corneas which are transparent through the near ultraviolet. The crystalline cone ofPalaemonetes likewise shows no near ultraviolet absorption but a strong protein band at 280 nm.The scarcity of ultraviolet receptors in the compound eyes of crustacea, in contrast to their common occurrence in insects, is thought to be related to the relative absence of ultraviolet wavelengths in most aquatic environments.This work was supported in part by USPHS research grant NB 03333 to Yale University and postdoctoral fellowship NB 22,547 to H.R.F.  相似文献   

14.
《Journal of Zoology》1967,151(1):1-16
Preliminary observations on spiders' eyes showed that certain eyes fluoresce in ultraviolet light and others do not. The response of these eyes to ultraviolet and visible light has been investigated to discover the relationship, if any, of eye fluorescence with eye function.
In the first part of this paper it is shown that of eight spiders from families with widely differing habits, vision and behaviour, five species reacted to light fluctuations and to differences in brightness of the primary colours blue, green and red. Three species did not respond to lightand only two, S. scenicus and E. falcata , indicated a preference for blue light. It was also found that the visual sensitivity of S. secenicus extended into the ultraviolet. The second part of the paper gives the results of examination in ultraviolet light of the eyes of 40 species from 11 families. Spiders with poor sight and a preference for shade generally showed a strong fluorescence of all eyes. The anterior median and lateral eyes of those species with good sight fluoresced only weakly or not at all, whereas the posterior median and lateral eyes ofthese spiders fluoresced brightly.
Freshly cut frozen sections of the eyes of two selected species, S. scenicus with good sight and C. similis with poor sight, were examined with the fluorescence, phase and polarizing microscopes. The localization of the fluorescence in these eyes is described and a fluorescent substance, common to all the spiders, was found in the lens of the eyes of most species examined.Additional information on the structure of the cornea and lens was also revealed by phase and polarized light microscopy.
The results suggest that spiders' eyes respond to light in different ways and the fluorescent substance present in the lens of the eyes is related to eye function.  相似文献   

15.
Spectral sensitivities of cells in principal eyes of the jumping spider Phidippus reqius were measured using techniques of intracellular recording. Three types of cells were found. UV cells had peak sensitivities at 370 nm and were over 4 log units less sensitive at wavelengths longer than 460 nm. Green-sensitive cells had spectral sensitivities which were well fit by nomogram curves peaking at 532 nm. UV-green cells had dual peaks of sensitivity at about 370 and 525 nm, but the ratios of UV-to-green sensitivities varied over a 40: 1 range from cell to cell. Moreover, responses of UV-green cells to flashes of UV light were slower than to flashes of green light. Segregation of receptor types into the known layers of receptors in these eyes could not be shown. It is concluded that jumping spiders have the potential for dichromatic color vision.  相似文献   

16.
Summary The pigment cells of the compound eye of the shrimps (Crangon crangon andC. allmani) were studied by electron microscopy (SEM and TEM) and microspectrophotometry. The compound eyes of these species contain light-absorbing and -reflecting pigments contained in granules, located in 5 different cells. The light absorbing pigment granules (light screen) are situated in (1) the distal pigment cells, (2) the retinular cells, (3) the basal pigment cells. The reflecting pigment granules are located in (4) the distal, and (5) the proximal reflecting pigment cells. Another innominate cell type investing the ommatidia contains vacuoles without pigment content. The innominate cell type, and the basal absorbing pigment cell (3) listed above, have not earlier been reported for a crustacean species. Measurements of the spectral absorption on sliced and squashed ommatidia show that all components of the light screen have an increased absorption in the wavelength regions 400–450 nm and 530–570 nm, probably due to xanthommatin and ommin. The spectral absorbancy of the reflecting pigment cells were not determined. Similar cells in other species are known to contain pteridines.We thank Prof. Dr. Langer, Bochum, Germany, for his kind help. The work was supported by funds from the Karolinska Institutet to Doc. G. Struwe, and grant NFR No. 2760-007 to Doc. R. Elofsson.  相似文献   

17.
Yokoyama S  Yang H  Starmer WT 《Genetics》2008,179(4):2037-2043
Vertebrate vision is mediated by five groups of visual pigments, each absorbing a specific wavelength of light between ultraviolet and red. Despite extensive mutagenesis analyses, the mechanisms by which contemporary pigments absorb variable wavelengths of light are poorly understood. We show that the molecular basis of the spectral tuning of contemporary visual pigments can be illuminated only by mutagenesis analyses using ancestral pigments. Following this new principle, we derive the "five-sites" rule that explains the absorption spectra of red and green (M/LWS) pigments that range from 510 to 560 nm. Our findings demonstrate that the evolutionary method should be used in elucidating the mechanisms of spectral tuning of four other pigment groups and, for that matter, functional differentiations of any other proteins.  相似文献   

18.
Spectral sensitivity curves can be distorted by screening pigments. We have determined whether this is true for Limulus polyphemus by determining, from receptor potentials recorded using intracellular microelectrodes, spectral sensitivity curves for normal animals and for white-eyed animals (which lack screening pigment). Our results show: (a) In median ocelli, the curve for UV-sensitive receptor cells peaks at 360 nm and does not depend on the presence of screening pigment, (b) The curve for ventral eye photoreceptors is identical to that for retinular cells from the lateral eyes of white-eyed animals and peaks at 520–525 nm. (c) In normal lateral eyes, when the stimulating light passes through screening pigment, the curve indicates relatively more sensitivity in the red region of the spectrum than does the curve for white-eyed animals. Therefore, the screening pigment is probably red-transmitting, (d) In median ocelli, the curve for visible-sensitive cells peaks at 525 nm and is approximately the same whether the ocelli are from normal or white-eyed animals. However, the curve is significantly broader than that for ventral eyes and for lateral eyes from white-eyed animals.  相似文献   

19.
S. Ciali    J. Gordon  P. Moller   《Journal of fish biology》1997,50(5):1074-1087
The spectral sensitivity of the weakly electric mormyrid fish Gnathonemus petersi was investigated under dark- and light-adapted conditions using a transient change (startle) in its electric organ discharge (EOD) rate as response measure. The startle was resistant to habituation and graded with light intensity. Under both lighting conditions, the fish responded optimally to a monochromatic light of 525 nm. A porphyropsin pigment (520–5402) appears to mediate spectral sensitivity over most of the visible spectrum. However, G. petersi responded more strongly to 625- and 675-nm lights (dark- and light-adapted fish) and a 725-nm light (light-adapted fish only) than predicted by the presence of a single rod pigment. These data suggest that at least one additional visual pigment (most likely of cone cells) maximally absorbing long wavelength light (600 nm or longer) is present. The spectral sensitivity data are consistent with the sensitivity hypothesis in that heightened sensitivity to long wavelength light is predicted for fish living in blackwater habitats which are characterized typically by low light levels and transmission of predominantly long wavelengths. Histology of the retina showed photoreceptors grouped into bundles and ensheathed by pigment epithelial cells. Our results demonstrated a functional visual sense in a species of fish much better known and studied for its electrosensory and electromotor abilities.  相似文献   

20.
The Central American hunting spider Cupiennius salei, like most other spiders, has eight eyes, one pair of principal eyes and three pairs of secondary eyes. The principal eyes and one pair of the secondary eyes have almost completely overlapping visual fields, and presumably differ in function. The retinae of the principal eyes can be moved independently by two pairs of eye muscles each, whereas the secondary eyes do not have such eye muscles. The behavioural relevance of retinal movements of freely moving spiders was investigated by a novel dual-channel telemetric registration of the eye muscle activities. Walking spiders shifted the ipsilateral retina with respect to the walking direction before, during and after a turning movement. The change in the direction of vision in the ipsilateral anterior median eye was highly correlated with the walking direction, regardless of the actual light conditions. The contralateral retina remained in its resting position. This indicates that Cupiennius salei shifts it visual field in the walking direction not only during but sometimes previous to an intended turn, and therefore “peers” actively into the direction it wants to turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号