首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative‐genetic analyses of cranial measurements closely match those from classical‐ and molecular‐genetic markers. Typically, among‐region differences account for ~10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among‐region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA‐sequence estimates of among‐region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA‐sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA‐sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. Am J Phys Anthropol 154:615–620, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
D'Arcy Thompson developed a method of coordinates which allowed for a geometrical presentation of form and form change. While his grid transformations have received much attention, little work in the geometry of form and form change has occurred since. We present a three-dimensional nonhomogeneous finite-element scaling method which allows for the mathematical and geometrical measurement of form change in addition to the graphical representation of these deformations as D'Arcy Thompson grids. This allows a reconciliation between geometrical and statistical methods for analyzing form. The method involves quantification of the transformation of one form into another in three dimensions without special registration and contains algorithms for obtaining a mean form. The method is applied to an analysis of variation in cranial form among adult male rhesus macaques from the Cayo Santiago skeletal collection. Variation was greatest in the superior-inferior direction, followed by the anterior-posterior and medial-lateral directions. The upper facial region is particularly variable. An analysis of allometry relative to local size variation shows that the larger any particular region is, the relatively greater its height, narrower its width, and shorter its length. An analysis of allometry relative to overall size showed that the upper face is positively allometric, the occipital region is strongly negatively allometric, and the other regions are isometric. After within-group variation is characterized, as described here, between-group studies, such as growth series and phylogenetic series, can be performed.  相似文献   

3.
Many studies in primate and human evolution focus on aspects of cranial morphology to address issues of systematics, phylogeny, and functional anatomy. However, broad analyses of cranial diversity within Primates as an Order are notably absent. In this study, we present a 3D geometric morphometric analysis of primate cranial morphology, providing a multivariate comparison of the major patterns of cranial shape change during primate evolution and quantitative assessments of cranial diversity among different clades. We digitized a set of 18 landmarks designed to capture overall cranial shape on male and female crania representing 66 genera of living primates. The landmark data were aligned using a Generalized Procrustes Analysis and then subjected to a principal components analysis to identify the major axes of cranial variation. Cranial diversity among clades was compared using multivariate measurements of variance. The first principal component axis reflects differences in cranial flexion, orbit size and orientation, and relative neurocranial volume. In general, it separates strepsirrhines from anthropoids. The second axis reflects differences in relative cranial height and snout length and primarily describes differences among anthropoids. Eulemur, Mandrillus, Pongo, and Homo are among the extremes in cranial shape. Anthropoids, catarrhines, and haplorhines show a higher variance than prosimians or strepsirrhines. Hominoids show the highest variance in cranial shape among extant primate clades, and much of this diversity is driven by the unique cranium of Homo sapiens. Am J Phys Anthropol 142:565–578, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Skull length is the measurement most commonly used as a standard against which other aspects of cranial morphology are compared to derive an index of relative size or proportions. However, skull length is composed of two different functional components, facial skull and cerebral skull, which vary independently and have different scaling relationships with body size. An analysis of carnivore skull shape with measurements standardized against basicranium length produced very different results than an analysis using skull length as the standard. For example, expressions of relative size of cranial measurements were reduced by 13% in mustelids and increased by 20% in canids, reflecting removal of jaw length (short in mustelids and long in canids) from the comparative standard (basicranial axis length). Cranial measurements scale with higher allometric exponents against basicranial axis length than against skull length.  相似文献   

5.
A series of 22 craniodental measurements were obtained for the three subspecies of potto (Perodicticus) and angwantibos (Arctocebus). To describe patterns of variation in Perodicticus, a discriminant function analysis (DFA) was performed with adult data. To investigate the ecogeographic correlates of size variation in Perodicticus, adult cranial dimensions were compared with field data on latitudinal and longitudinal coordinates for available specimens as well as altitudinal data for a more limited sample. Ontogenetic series for larger-bodied Perodicticus and smaller-bodied Arctocebus were compared to test the hypothesis that inter- and intrageneric variation in skull form results from the differential extension/truncation of shared patterns of relative growth, and to assess morphological variation in the masticatory complex of sister taxa with differing dietary habits. Analyses of relative growth indicate that skull proportions in Perodicticus subspecies are largely ontogenetically scaled. In comparisons between Perodicticus and Arctocebus, most facial dimensions also are ontogenetically scaled, with all but one of the seven divergent comparisons (interorbital breadth) representing a feature of the masticatory apparatus. The DFA provided independent support for prior classifications of Perodicticus into three taxa. Size differentiation in African lorises appears to be correlated with altitudinal variation (Bergmann's Rule) as well as character displacement. The smallest pottos, P. p. potto, occupy low-lying coastal habitats in western Africa, whereas the larger, eastern forms inhabit higher, presumably colder elevations. The largest potto, P. p. edwardsi, is sympatric throughout most of its range with the smallest and most insectivorous African lorises (Arctocebus). A basis for intrageneric taxonomic variation in Perodicticus is supported by such nonclinal size variation, as well as divergences in the ontogeny of masticatory proportions corresponding to interspecific variation in dietary proclivities.  相似文献   

6.
Non-geographic morphometric variation, particularly at the level of sexual dimorphism and ontogenetic (age-related) variation, has been documented in rodents, and useful for establishing whether to analyse sexes separately or together, and for selecting adult specimens for subsequent data recording and analysis. However, such studies have largely been based on traditional morphometric analyses of linear measurements that mainly focus on overall size, rather than shape-related morphometric variation. Unit-free, landmark/outline-based geometric morphometric analyses are considered to offer a more appropriate tool for assessing shape-related morphometric variation. In this study, we used geometric cranial morphometric analysis to assess the nature and extent of sexual dimorphism and age variation within the Tete veld rat, Aethomys ineptus (Thomas and Wroughton, 1908) from southern Africa and the African Nile rat, Arvicanthis niloticus (Desmarest, 1822) from Sudan. The results obtained were in turn compared with previously published results based on independent geometric and traditional cranial morphometric data from the same sampled populations examined in the present study. While our geometric morphometric results detected statistically significant sexual dimorphism in cranial shape within Ar. niloticus only, previously published results based on traditional morphometric data failed to detect significant sexual dimorphism within this species. However, similar to previously published traditional morphometric data, our geometric morphometric results detected statistically significant age-related variation in cranial shape and size within both Ae. ineptus and Ar. niloticus, with individuals of age classes 5 and 6 being considered to represent adult specimens. Our results highlight the importance of carefully evaluating both size- and shape-related non-geographic morphometric variation prior to the analysis of geographic variation and the delineation of species. Erroneous conclusions of non-geographic variation may have implications in the interpretation of geographic and evolutionary processes that may be responsible for morphological differences at both the inter- and intra-specific levels.  相似文献   

7.
黑叶猴和菲氏叶猴颅骨的比较研究   总被引:1,自引:0,他引:1  
  相似文献   

8.
2011年在福建漳平奇和洞发现的距今1万年左右的新石器时代早期人类遗骸"奇和洞III号",是迄今在福建地区发现的最早、最完整的古人类头骨,为探讨华南更新世晚期向全新世过渡阶段人类的体质特征及现代人群的形成与分化提供了重要的研究材料。本文对这件头骨进行了研究,奇和洞III号为35岁左右的男性个体,牙齿龋病严重,推测当时人类的经济模式主要以农耕为主。通过与更新世晚期柳江、山顶洞101号及14组新石器时代人类头骨的比较,发现奇和洞III号头骨兼有更新世晚期人类及新石器南、北方居民的混合体质特征:奇和洞III号头骨长而脑量大,似更新世晚期人类;其高而狭窄的面部、宽阔而低矮的鼻部,呈现出不同于南、北方人群的特殊体质特征。主成分分析显示,奇和洞III号与对比的新石器时代各组在头骨的测量数据上没有表现为明显的南、北地区间差异,但在头骨的测量指数或形状上存在时代和地区间的不同。本文研究为新旧石器过渡阶段人类体质特征的变异提供了进一步证据。  相似文献   

9.
Previous work by several researchers has suggested that the cranial sample from Zhoukoudian possesses a unique metric pattern relative to the African and Asian specimens assigned to Homo erectus. The current study readdresses this issue with an expanded fossil sample and a larger and more comprehensive set of cranial measurements. To test the patterns present in the assemblage, canonical variates analysis was performed using a covariance matrix generated from the Howells data set. From this, interindividual Mahalanobis distances were computed for the fossils. Random expectation statistics were then used to measure statistical significance of the Mahalanobis distances. The results show that the Zhoukoudian hominids exhibit a unique metric pattern not shared by the African and Indonesian crania sampled. In these tests the Hexian calvaria resembled the African and Indonesian specimens and differed significantly from the craniometric pattern seen in the Zhoukoudian fossils. The Zhoukoudian specimens are characterized by a wide midvault and relatively narrow occipital and frontal bones, while the African and Indonesian crania (including Hexian) have relatively broad frontal and occipital dimensions compared to their midvaults. These results do not suggest that a multiple-species scenario is necessary to encompass the variation present in the sample. Based on the current evidence it is more probable that this variation reflects polytypism influenced by environmental adaptation and/or genetic drift.  相似文献   

10.
11.
The human skull is a complex and highly integrated structure that has long held the fascination of anthropologists and evolutionary biologists. Recent studies of the genetics of craniofacial variation reveal a very complex and multifactorial picture. These findings contrast with older ideas that posit much simpler developmental bases for variation in cranial morphology such as the growth of the brain or the growth of the chondrocranium relative to the dermatocranium. Such processes have been shown to have major effects on cranial morphology in mice. It is not known, however, whether they are relevant to explaining normal phenotypic variation in humans. To answer this question, we obtained vectors of shape change from mutant mouse models in which the developmental basis for the craniofacial phenotype is known to varying degrees, and compared these to a homologous dataset constructed from human crania obtained from a single population with a known genealogy. Our results show that the shape vectors associated with perturbations to chondrocranial growth, brain growth, and body size in mice do largely correspond to axes of covariation in humans. This finding supports the view that the developmental basis for craniofacial variation funnels down to a relatively small number of key developmental processes that are similar across mice and humans. Understanding these processes and how they influence craniofacial shape provides fundamental insights into the developmental basis for evolutionary change in the human skull as well as the developmental-genetic basis for normal phenotypic variation in craniofacial form.  相似文献   

12.
Knowledge of the evaporative loss from lakes and reservoirs is critical to water resources managers as well as to the overall understanding of the water balance in a given basin, geographical region, or continent. Existing methods for ascertaining evaporation from lakes and reservoirs include point measurements, water balance and mass transfer calculations, and proxy measurements using a pan. Point measurements using the eddy flux covariance method can be accurate, but are resource intensive and unsuited for determining spatial variation over a lake, or for obtaining measurements over many lakes. Mass balance methods cannot provide spatial variability and their accuracy depends on other portions of the water balance that can be challenging to obtain, such as leakage. Similarly, relatively recently deployed scintillation methods provide only an average for a strip across a lake and are also resource intensive and not suited for multi-lake studies. Evaporation pan measurements can also be used, though their accuracy is poor. Herein, we use a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements of water surface temperature, measurements of wind speed, air temperature, and relative humidity from local NWS stations, and a mass transfer method, to demonstrate multi-lake evaporation measurements. Specifically, the seasonal variation in evaporation is obtained for the five major lakes in the Savannah River Basin (in South Carolina, USA): Lakes Jocassee, Keowee, Hartwell, Russell, and Thurmond. Since this approach requires only an existing satellite resource with global coverage and existing NWS stations, this method can potentially be ported to any lake where there is a nearby meteorology station. Hence, this method could be used by both water resource managers and limnologists alike. The possibility is discussed of extending this approach beyond a single basin to encompass an entire geographical region or continent.  相似文献   

13.
Heterochrony is widely regarded as an important evolutionary mechanism, one that may underlie most, if not all, morphological evolution, yet relatively few studies have examined variation in the sequence of development. Even fewer studies have been designed so that intraspecific variation in the relative sequence of developmental events can be assessed, although this variation must be the basis for evolutionary change. Intraspecific variation in developmental ossification sequences was documented from the zebrafish (Danio rerio) by Cubbage and Mabee (1996) and from the Siamese fighting fish (Betta splendens) by Mabee and Trendler (1996), but a quantitative analysis of the patterns within this variation was not made. Here, we quantify the effect of rearing temperature on the sequence of ossification and characterize the levels and patterns of intraspecific variation in these fishes. For Danio, there were no temperature effects on the sequence of bone development across the cranium, cranial region development, cartilage versus dermal bones, or lateral line bone versus nonassociated bones. Likewise the level of variation in relative sequence (position) of ossification was low, about two ranks, across temperatures. At higher temperatures, we found higher levels of variation in iterated cranial bones and less in bones forming early in the sequence. No temperature effects on variation were found among regions, between lateral line-associated bones and nonassociated bones, between median and paired bones, or across the entire sequence, indicating concordant variability among the three temperatures. Individual bones with the highest levels of variability were not consistent among temperatures. Baseline patterns of intraspecific variation in Danio were compared to those of Betta. For both species, the level of intraspecific variation in sequence position was low and the variability of cranial bones was concordant. Individual bones with the highest levels of variability were not consistent between species. In both species, variation was widespread (distributed evenly across the sequence). We used comparisons (among regions, between dermal and cartilage bones, between lateral line-associated and other bones, between median and paired bones, between iterated and noniterated bones, between feeding-associated bones and others) to see which subsets were most variable and thus potentially useful in predicting high levels of evolutionary change. The only subset of bones that was significantly more variable than others was cartilage bones. If interspecific patterns are parallel to these intraspecific differences, cartilage bones would be expected to show higher levels of heterochrony. Although concordance across the cranial ossification sequence and among regions in Danio, Betta, and two other teleosts, Oryzias and Barbus, suggests an evolutionarily conserved pattern of ossification, identity in sequence position across taxa was not observed for any bone. Thus, variation existed in sequence position across temperatures and species. Intraspecific variation of this sort may influence the morphological outcome and evolutionary trajectories of species.  相似文献   

14.
Fragmentary human remains compromised by different types of inhumation, or physical insults such as explosions, fires, and mutilations may frustrate the use of traditional morphognostic sex determination methods. The basicranium is protected by a large soft tissue mass comprising muscle, tendon, and ligaments. As such, the occipital region may prove useful for sex identification in cases of significantly fragmented remains. The aims of this paper are to (1) evaluate sexual dimorphism in British cranial bases by manually recorded unilateral and bilateral condylar length and width as well as intercondylar measurements and (2) develop discriminant functions for sex determination for this cranial sample. The crania selected for this study are part of the 18th-19th century documented skeletal collection of St. Bride's Church, Fleet Street, London. Adult human skulls (n = 146; male75/female71) were measured to derive statistical functions. Results indicated that expression of sexual dimorphism in the occipital condylar region within the St. Bride's population is demonstrable but low. Crossvalidated classification accuracy ranged between 69.2 and 76.7%, and sex bias ranged from 0.3 to 9.7%. Therefore, the use of discriminant functions derived from occipital condyles, especially in British skeletal populations, should only be considered in cases of fragmented cranial bases when no other morphognostic or morphometric method can be utilized for sex determination.  相似文献   

15.
《Plains anthropologist》2013,58(94):19-29
Abstract

Cranial measurements of 13 male and 12 female samples from the Central and Northern Plains region were subjected to canonical analysis. The samples include historic or protohistoric crania that can be ascribed to the Arikara, Mandan, Pawnee, Ponca and Omaha tribes. In addition, two samples belong to the archaeologically defined St. Helena Focus. Both sexes yielded five significant canonical variates, although only four were readily interpretable. The first canonical variate is clearly a Siouan-Caddoan discriminator and reflects variation in cranial vault height. St. Helena sites associate with the Arikara on this axis, supporting previous craniometric analyses which suggest a relationship between these two groups. Subsequent canonical variates deal with more particular aspects of craniometric variation among groups, but are still interpretable in historic or evolutionary terms. The classificatory analysis shows that the Arikara sites are closely related. A major exception to this is the Sully site, which frequently misclassifies with non-Arikara groups. This suggests that the Sully crania have little collective reality; and that there may be non-Arikara components represented at the Sully Site.  相似文献   

16.
Anthropometric data from five indigenous Mexican groups, collected by Carlos and Manuel Basauri in 1933, were reanalyzed and compared with serological and cranial non-metric data. Ten cranial and 14 postcranial measurements were used, both separately and together. Bias-corrected r0 and FST values were slightly higher for the postcranial analysis (0.033) than for the cranial analysis (0.024). Given the degree of linguistic differentiation among the Mexican populations, not to mention the different histories of the communities sampled, this result is surprisingly low. The two groups which were closest linguistically and geographically, the Cora and Huichol, were also close biologically. The other three groups, Tarascan, Aztecan, and Otomi, were not closely related to each other or to the Cora-Huichol pair. More interesting than the relationship between populations in this case are those within them. The Aztecas of Tuxpan, Jalisco, exhibit high rii values and lower-than-expected phenotypic variance, suggesting the pronounced action of genetic drift. The Otomi of Ixmiquilpan and Cora of the Sierra de Nayarit, despite their very different histories, both exhibit low rii values and higher-than-expected phenotypic variance, indicating a high level of gene flow. Despite the phenotypic similarities between the Cora and Huichol, their residual variance is very different; this mirrors serological investigations of relative admixture. Over all, recent population history, and especially non-indigenous admixture, are at least as explicative of the observed biological variation as historical linguistic ties are.  相似文献   

17.
Most evolutionary explanations for cranial differences between Neandertals and modern humans emphasize adaptation by natural selection. Features of the crania of Neandertals could be adaptations to the glacial climate of Pleistocene Europe or to the high mechanical strains produced by habitually using the front teeth as tools, while those of modern humans could be adaptations for articulate speech production. A few researchers have proposed non-adaptive explanations. These stress that isolation between Neandertal and modern human populations would have lead to cranial diversification by genetic drift (chance changes in the frequencies of alleles at genetic loci contributing to variation in cranial morphology). Here we use a variety of statistical tests founded on explicit predictions from quantitative- and population-genetic theory to show that genetic drift can explain cranial differences between Neandertals and modern humans. These tests are based on thirty-seven standard cranial measurements from a sample of 2524 modern humans from 30 populations and 20 Neandertal fossils. As a further test, we compare our results for modern human cranial measurements with those for a genetic dataset consisting of 377 microsatellites typed for a sample of 1056 modern humans from 52 populations. We conclude that rather than requiring special adaptive accounts, Neandertal and modern human crania may simply represent two outcomes from a vast space of random evolutionary possibilities.  相似文献   

18.
This study presents univariate narrow-sense heritability estimates for 33 common craniometric dimensions, calculated using the maximum likelihood variance components method on a skeletal sample of 298 pedigreed individuals from Hallstatt, Austria. Quantitative genetic studies that use skeletal cranial measurements as a basis for inferring microevolutionary processes in human populations usually employ heritability estimates to represent the genetic variance of the population. The heritabilities used are often problematic: most come from studies of living humans, and/or they were calculated using statistical techniques or assumptions violated by human groups. Most bilateral breadth measures in the current study show low heritability estimates, while cranial length and height measures have heritability values ranging between 0.102-0.729. There appear to be differences between the heritabilities calculated from crania and those from anthropometric studies of living humans, suggesting that the use of the latter in quantitative genetic models of skeletal data may be inappropriate. The univariate skeletal heritability estimates seem to group into distinct regions of the cranium, based on their relative values. The most salient group of measurements is for the midfacial/orbital region, with a number of measures showing heritabilities less than 0.30. Several possible reasons behind this pattern are examined. Given the fact that heritabilities calculated on one population should not be applied to others, suggestions are made for the use of the data presented.  相似文献   

19.
Most studies in evolutionary developmental biology focus on large-scale evolutionary processes using experimental or molecular approaches, whereas evolutionary quantitative genetics provides mathematical models of the influence of heritable phenotypic variation on the short-term response to natural selection. Studies of morphological integration typically are situated in-between these two styles of explanation. They are based on the consilience of observed phenotypic covariances with qualitative developmental, functional, or evolutionary models. Here we review different forms of integration along with multiple other sources of phenotypic covariances, such as geometric and spatial dependencies among measurements. We discuss one multivariate method [partial least squares analysis (PLS)] to model phenotypic covariances and demonstrate how it can be applied to study developmental integration using two empirical examples. In the first example we use PLS to study integration between the cranial base and the face in human postnatal development. Because the data are longitudinal, we can model both cross-sectional integration and integration of growth itself, i.e., how cross-sectional variance and covariance is actually generated in the course of ontogeny. We find one factor of developmental integration (connecting facial size and the length of the anterior cranial base) that is highly canalized during postnatal development, leading to decreasing cross-sectional variance and covariance. A second factor (overall cranial length to height ratio) is less canalized and leads to increasing (co)variance. In a second example, we examine the evolutionary significance of these patterns by comparing cranial integration in humans to that in chimpanzees.  相似文献   

20.
This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号