首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we have investigated cytosolic and mitochondrial Ca(2+) signals in isolated mouse pancreatic acinar cells double-loaded with the fluorescent probes fluo-3 and rhod-2. Stimulation of pancreatic acinar cells with 500 nm acetylcholine caused release of Ca(2+) from intracellular stores and produced cytosolic Ca(2+) signals in form of Ca(2+) waves propagating from the luminal to the basal cell pole. The increase in the cytosolic Ca(2+) concentration was followed by Ca(2+) uptake into mitochondria. Between onset of cytosolic and mitochondrial Ca(2+) signals there was a delay of 10.7 +/- 0.4 s. Ca(2+) uptake into mitochondria could be inhibited with Ruthenium Red and carbonyl cyanide m-chlorophenylhydrazone, whereas 2,5-di-tert-butylhydroquinone, which inhibits sarco(endo)plasmic reticulum Ca(2+) ATPases, did not prevent Ca(2+) accumulation in mitochondria. Carbonyl cyanide m-chlorophenylhydrazone-induced Ca(2+) release from mitochondria could only be observed after a preceding stimulation of the cell with a physiological agonist or by treatment with 2, 5-di-tert-butylhydroquinone, indicating that under resting conditions mitochondria do not contain releasable Ca(2+) ions. Analysis of the propagation rate of acetylcholine-induced Ca(2+) waves revealed that inhibition of mitochondrial Ca(2+) uptake did not accelerate spreading of cytosolic Ca(2+) signals. Our experiments indicate that in the early phase of secretagogue-induced Ca(2+) signals, mitochondria behave as passive Ca(2+)-buffering elements and do not actively suppress spreading of Ca(2+) signals in pancreatic acinar cells.  相似文献   

2.
Agonist-specific cytosolic Ca2+ oscillation patterns can be observed in individual cells and these have been explained by the co-existence of separate oscillatory mechanisms. In pancreatic acinar cells activation of muscarinic receptors typically evokes sinusoidal oscillations whereas stimulation of cholecystokinin (CCK) receptors evokes transient oscillations consisting of Ca2+ waves with long intervals between them. We have monitored changes in the cytosolic Ca2+ concentration ([Ca2+]i) by measuring Ca2(+)-activated Cl- currents in single internally perfused mouse pancreatic acinar cells. With minimal intracellular Ca2+ buffering we found that low concentrations of both ACh (50 nM) and CCK (10 pM) evoked repetitive short-lasting Ca2+ spikes of the same duration and frequency, but the probability of a spike being followed by a longer and larger Ca2+ wave was low for ACh and high for CCK. The probability that the receptor-evoked shortlasting Ca2+ spikes would initiate more substantial Ca2+ waves was dramatically increased by intracellular perfusion with solutions containing high concentrations of the mobile low affinity Ca2+ buffers citrate (10-40 mM) or ATP (10-20 mM). The different Ca2+ oscillation patterns normally induced by ACh and CCK would therefore appear not to be caused by separate mechanisms. We propose that specific receptor-controlled modulation of Ca2+ signal spreading, either by regulation of Ca2+ uptake into organelles and/or cellular Ca2+ extrusion, or by changing the sensitivity of the Ca2(+)-induced Ca2+ release mechanism, can be mimicked experimentally by different degrees of cytosolic Ca2+ buffering and can account for the various cytosolic Ca2+ spike patterns.  相似文献   

3.
The microsomal Ca-ATPase inhibitor thapsigargin induces in rat salivary acinar cells [Ca2+]i oscillations which, though similar to those activated by agonists, are independent of inositol phosphates or inositol 1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores (Foskett, J. K., Roifman, C., and Wong, D. (1991) J. Biol. Chem. 266, 2778-2782). To examine whether the oscillation mechanism resides in another, thapsigargin- and IP3-insensitive intracellular store, we examined the effects of caffeine and ryanodine, known modulators of Ca2+ release from sarcoplasmic reticulum in excitable cells. Oscillations were induced by caffeine (1-20 mM) in nonoscillating thapsigargin-treated acinar cells, which required the continued presence of caffeine, whereas caffeine was without effect or reduced oscillation amplitude in oscillating cells. Ryanodine (10-50 microM) inhibited oscillations in most of the cells. These results suggest that Ca2+ oscillations in parotid acinar cells are driven by periodic Ca2+ release from an IP3-insensitive Ca2+ store with properties similar to sarcoplasmic reticulum of excitable cells.  相似文献   

4.
How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle selection") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles, evoking spatial Ca2+ responses that mirror the organellar distribution. In pancreatic acinar cells, acetylcholine and bombesin exclusively select the ER Ca2+ store, whereas cholecystokinin additionally recruits a lysosome-related organelle. Similarly, in a pancreatic beta cell line MIN6, acetylcholine selects only the ER, whereas glucose mobilizes Ca2+ from a lysosome-related organelle. We also show that the key to organelle selection is the agonist-specific coupling messenger(s) such that the ER is selected by recruitment of inositol 1,4,5-trisphosphate (or cADP-ribose), whereas lysosome-related organelles are selected by NAADP.  相似文献   

5.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

6.
The cytoplasmic calcium concentration (Ca2+i) was measured in individual mouse pancreatic beta-cells loaded with fura-2 by recording the 340/380 nm fluorescence excitation ratio. An increase of the glucose concentration from 3 to 20 mM, caused initial lowering of Ca2+i followed by a rise with a peak preceding constant elevation at an intermediary level. However, at 11 mM glucose there were large Ca2+i oscillations with a frequency of 1 cycle per 2-6 min. The results indicate that both first and second phase secretion depend on elevated Ca2+i, and that many electrically coupled cells collectively determine the pace of rhythmic depolarization.  相似文献   

7.
A mathematical model is proposed which systematically investigates complex calcium oscillations in pancreatic acinar cells. This model is based on calcium-induced calcium release via inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR) and includes calcium modulation of inositol (1,4,5) trisphosphate (IP3) levels through feedback regulation of degradation and production. In our model, the apical and the basal regions are separated by a region containing mitochondria, which is capable of restricting Ca2+ responses to the apical region. We were able to reproduce the observed oscillatory patterns, from baseline spikes to sinusoidal oscillations. The model predicts that calcium-dependent production and degradation of IP3 is a key mechanism for complex calcium oscillations in pancreatic acinar cells. A partial bifurcation analysis is performed which explores the dynamic behaviour of the model in both apical and basal regions.  相似文献   

8.
Oscillations of free intracellular Ca2+ concentration ([Ca2+]i) are known to occur in many cell types during physiological cell signaling. To identify the basis for the oscillations, we measured both [Ca2+]i and extracellular Ca2+ concentration ([Ca2+]o) to follow the fate of Ca2+ during stimulation of [Ca2+]i oscillations in pancreatic acinar cells. [Ca2+]i oscillations were initiated by either t-butyloxycarbonyl-Tyr(SO3)-Nle-Gly-Tyr-Nle-Asp-2-phenylethyl ester (CCK-J), which mobilized Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-insensitive pool, or low concentration of cholecystokinin octapeptide (CCK-OP), which mobilized Ca2+ from the IP3-sensitive internal pool. Little Ca2+ efflux occurred during the oscillations triggered by CCK-J or CCK-OP in spite of a large average increase in [Ca2+]i. When internal store Ca2+ pumps were inhibited with thapsigargin (Tg) during [Ca2+]i oscillations, a rapid Ca2+ efflux occurred similar to that measured in intensely stimulated, nonoscillatory cells. Tg also stimulated 45Ca efflux from internal pools of cells stimulated with CCK-J or a low concentration of CCK-OP. Hence, a large fraction of the Ca2+ released during each spike is reincorporated by the internal store Ca2+ pumps. Surprisingly, when the increase in [Ca2+]i during stimulation of oscillations was prevented by loading the cells with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, a persistent activation of Ca2+ release and Ca2+ efflux occurred. This was reflected as a persistent increase in [Ca2+]o in cells suspended at low [Ca2+]o or persistent efflux of 45Ca from internal stores of cells maintained at high [Ca2+]o. Since agonist-stimulated Ca2+ release evidently remains activated when [Ca2+]i is highly buffered, the primary mechanism determining Ca2+ oscillations must include an inhibition of Ca2+ release by [Ca2+]i. Loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid had no apparent effect on the levels or kinetics of IP3 formation in agonist-stimulated cells. This suggests that [Ca2+]i regulated the oscillation by inhibition of Ca2+ release independent of its possible effects on cellular levels of IP3.  相似文献   

9.
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells.  相似文献   

10.
Oscillations of cytoplasmic Ca2+ (Ca2+i) involved in cell regulation have recently attracted considerable attention. In the pancreatic beta-cells an intermediate concentration of glucose (11 mM) induces large oscillations of Ca2+i with periods of 2 to 6 min. Procedures stimulating insulin secretion further, such as raising glucose to 20-30 mM or adding carbachol, ATP, theophylline, glucagon, or forskolin, often changed these oscillations into a steady increase of Ca2+i. In addition, forskolin and glucagon triggered prominent 9- to 14-s Ca2+i spikes during the intervals of increased Cai2+, whereas carbachol and ATP initiated a series of rapid spikes of decreasing magnitude and increasing duration (6-11 s). All types of oscillations depended on the presence of extracellular Ca2+i, but carbachol and ATP also induced single Cai2+ transients in the absence of the cation. The results demonstrate hitherto unknown oscillations of Ca2+i in the pancreatic beta-cell which are dependent in different ways on Ca2+ entry.  相似文献   

11.
Summary The effects on the cytosolic Ca2+ concentration of activating cholecystokinin receptors on single mouse pancreatic acinar cells have been investigated using patch-clamp whole-cell recording of Ca2+-dependent Cl current. We used the nonsulphated octapeptide of cholecystokinin (CCK8-NS) since the effects of even high concentrations were rapidly reversible which was not the case for the sulphated octapeptide. A submaximal concentration of CCK8-NS (10nm) evoked a current response consisting of short-lasting (a few seconds) spikes, and some of these spikes were seen to trigger larger and longer (about half a minute) current pulses. At a higher concentration (100nm) CCK8-NS evoked smooth and sustained responses. The effect of CCK8-NS was almost abolished when the internal perfusion solution contained a high concentration of the Ca2+ chelator EGTA (5mm). The responses evoked by CCK8-NS were independent of the presence of Ca2+ in the external solution at least for the first 5 min of stimulation. Internal perfusion with GTP--S markedly potentiated the effect of CCK8-NS or at a higher concentration itself induced responses very similar to those normally evoked by CCK8-NS. Caffeine added to the external solution at a low concentration (0.2–1mm) enhanced weak CCK8-NS responses, whereas high caffeine concentrations always inhibited the CCK8-NS-evoked responses. These inhibitory caffeine effects were quickly reversible. Forskolin evoked a similar inhibitory effect. Intracellular heparin (200 g/ml) infusion markedly inhibited the response to CCK8-NS stimulation. We conclude that the primary effect of activating CCK receptors is to induced inositoltrisphosphate (IP3) production. IP3 evokes a small and steady Ca2+ release, and this in turn evokes pulsatile release of a larger magnitude from a caffeine-sensitive Ca2+ pool. The action of CCK is thus very similar to that previously established for muscarinic receptor activation in the same cells. Nevertheless, the pattern of the cytosolic Ca2+ fluctuations are different, and the basic process of Ca2+-induced Ca2+ release and Ca2+ signal spreading must therefore be modulated by a messenger yet unknown.  相似文献   

12.
High resolution digital video imaging has been employed to monitor the spatial and temporal development of agonist-induced cytosolic Ca2+ signals in fura 2-loaded exocrine acinar cells. Enzymatically isolated mouse pancreatic and lacrimal acinar cells or small acinar cell clusters were used. These retain their morphological polarity so that the secretory granules in individual cells are located at one pole, the secretory pole. In acinar cell clusters the granules are located centrally, oriented to surround what would be in situ referred to as the lumen. In pancreatic and lacrimal acinar cells inositol-1,4,5-triphosphate-generating agonists [acetylcholine (ACh) and cholecystokinin octapeptide (CCK) for the pancreas and ACh in the lacrimal gland] give rise to a rapidly spreading Ca2+ signal that is initiated at the secretory pole of the cells. The initial increase in [Ca2+]i in the luminal pole is independent of extracellular Ca2+ indicating that the earliest detectable intracellular Ca2+ release is specifically located at the secretory pole. In lacrimal acinar cells ATP acts as an extracellular agonist, independent of phosphoinositide metabolism to activate a receptor-operated calcium influx pathway which, as for ACh, gives rise firstly to an increase in intracellular Ca2+ concentration in the secretory pole. We propose that this polar rise in intracellular Ca2+ concentration is due to Ca(2+)-induced Ca2+ release. By contrast, when Ca2+ release and Ca2+ influx are induced in the absence of receptor activation by thapsigargin and ionomycin, the Ca2+ signal develops diffusely and slowly with no localization to the secretory pole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have investigated the role of the ryanodine-sensitive intracellular Ca2+ release channel (ryanodine receptor) in the cytosolic Ca2+ oscillations evoked in pancreatic acinar cells by acetylcholine (ACh) or cholecystokinin (CCK). Ryanodine abolished or markedly inhibited the agonist evoked Ca2+ spiking, but enhanced the frequency of spikes evoked by direct internal inositol trisphosphate (InsP3) application. We have also investigated the possibility that cyclic ADP-ribose (cADP-ribose), the putative second messenger controlling the ryanodine receptor, plays a role in Ca2+ oscillations. We found that cADP-ribose could itself induce repetitive Ca2+ spikes localized in the secretory pole and that these spikes were blocked by ryanodine, but also by the InsP3 receptor antagonist heparin. Our results indicate that both the ryanodine and the InsP3 receptors are involved in Ca2+ spike generation.  相似文献   

14.
M Wakui  Y V Osipchuk  O H Petersen 《Cell》1990,63(5):1025-1032
Receptor-mediated inositol 1,4,5-trisphosphate (Ins-(1,4,5)P3) generation evokes fluctuations in the cytoplasmic Ca2+ concentration ([Ca2+]i). Intracellular Ca2+ infusion into single mouse pancreatic acinar cells mimicks the effect of external acetylcholine (ACh) or internal Ins(1,4,5)P3 application by evoking repetitive Ca2+ release monitored by Ca2(+)-activated Cl- current. Intracellular infusion of the Ins(1,4,5)P3 receptor antagonist heparin fails to inhibit Ca2+ spiking caused by Ca2+ infusion, but blocks ACh- and Ins(1,4,5)P3-evoked Ca2+ oscillations. Caffeine (1 mM), a potentiator of Ca2(+)-induced Ca2+ release, evokes Ca2+ spiking during subthreshold intracellular Ca2+ infusion. These results indicate that ACh-evoked Ca2+ oscillations are due to pulses of Ca2+ release through a caffeine-sensitive channel triggered by a small steady Ins(1,4,5)P3-evoked Ca2+ flow.  相似文献   

15.
Ca2+ extrusion was measured simultaneously with the free intracellular Ca2+ concentration ([Ca2+]i) from single pancreatic acinar cells placed in microdroplets of extracellular solution (Tepikin, A. V., Voronina, S. G., Gallacher, D. V., and Petersen, O. H. (1992) J. Biol. Chem. 267, 3569-3572). Submaximal stimulation with cholecystokinin usually evoked discrete cytosolic Ca2+ spikes and each of these spikes was associated with a discrete and virtually synchronous pulse of Ca2+ extrusion into the extracellular microdroplet solution. When ACh evoked repetitive discrete [Ca2+]i spikes, each spike was also accompanied by a discrete pulse of Ca2+ extrusion. The velocity of Ca2+ extrusion oscillated with a time course similar to that of [Ca2+]i. The extracellular solution in our experiments had a low total calcium concentration (15-35 microM) and only a limited number of [Ca2+]i spikes (2-8) could be evoked. The magnitudes of the [Ca2+]i spikes and the amounts of Ca2+ extruded during each spike gradually decreased in each experiment. During the first cholecystokinin-evoked cytosolic Ca2+ spike the Ca2+ extrusion corresponded to a loss of 15-70% (mean value 39% +/- 12) of the mobilizable cellular calcium pool. The substantial pulsatile Ca2+ extrusion occurring synchronously with the receptor-activated cytosolic Ca2+ spikes is therefore an important element in repetitively bringing back [Ca2+]i to the resting level.  相似文献   

16.
Control of Ca2+ wave propagation in mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
We haveinvestigated control mechanisms involved in the propagation ofagonist-induced Ca2+ waves inisolated mouse pancreatic acinar cells. Using a confocal laser-scanningmicroscope, we were able to show that maximal stimulation of cells withacetylcholine (ACh, 500 nM) or bombesin (1 nM) caused an initialCa2+ release of comparable amountswith both agonists at the luminal cell pole. SubsequentCa2+ spreading to the basolateralmembrane was faster with ACh (17.3 ± 5.4 µm/s) than with bombesin(8.0 ± 2.2 µm/s). The speed of bombesin-inducedCa2+ waves could be increased upto the speed of ACh-induced Ca2+waves by inhibition of protein kinase C (PKC). Activation of PKCsignificantly decreased the speed of ACh-inducedCa2+ waves but had only littleeffect on bombesin-evoked Ca2+waves. Within 3 s after stimulation, production of inositol1,4,5-trisphosphate [Ins(1,4,5)P3]was higher in the presence of ACh compared with bombesin, whereasbombesin induced higher levels of diacylglycerol (DAG) than ACh. Thesedata suggest that the slower propagation speed of bombesin-inducedCa2+ waves is due to higheractivation of PKC in the presence of bombesin compared with ACh. Thehigher increase in bombesin- compared with ACh-induced DAG productionis probably due to activation of phospholipase D (PLD). Inhibition ofthe PLD-dependent DAG production by preincubation with 0.3% butanolled to an acceleration of the bombesin-induced Ca2+ wave. In further experiments,we could show that ruthenium red (100 µM), an inhibitor ofCa2+-inducedCa2+ release in skeletal muscle,also decreased the speed of ACh-induced Ca2+ waves. The effect ofruthenium red was not additive to the effect of PKC activation. Fromthe data, we conclude that, following Ins(1,4,5)P3-inducedCa2+ release in the luminal cellpole, secondary Ca2+ release fromstores, which are located in series between the luminal and the basalplasma membrane, modifies Ca2+spreading toward the basolateral cell side byCa2+-inducedCa2+ release. Activation of PKCleads to a reduction in Ca2+release from these stores and therefore could explain the slower propagation of Ca2+ waves in thepresence of bombesin compared with ACh.

  相似文献   

17.
Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism.  相似文献   

18.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

19.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

20.
We investigated the effect of cytosolic and extracellular Ca2+ on Ca2+ signals in pancreatic acinar cells by measuring Ca2+ concentration in the cytosol([Ca2+]c) and in the lumen of the ER([Ca2+]Lu). To control buffers and dye in the cytosol, a patch-clamp microelectrode was employed. Acetylcholine released Ca2+ mainly from the basolateral ER-rich part of the cell. The rate of Ca2+ release from the ER was highly sensitive to the buffering of [Ca2+]c whereas ER Ca2+ refilling was enhanced by supplying free Ca2+ to the cytosol with [Ca2+]c clamped at resting levels with a patch pipette containing 10 mM BAPTA and 2 mM Ca2+. Elevation of extracellular Ca2+ to 10 mM from 1 mM raised resting [Ca2+]c slightly and often generated [Ca2+]c oscillations in single or clustered cells. Although pancreatic acinar cells are reported to have extracellular Ca2+-sensing receptors linked to phospholipase C that mobilize Ca2+ from the ER, exposure of cells to 10 mM Ca2+ did not decrease [Ca2+]Lu but rather raised it. From these findings we conclude that 1) ER Ca2+ release is strictly regulated by feedback inhibition of [Ca2+]c, 2) ER Ca2+ refilling is determined by the rate of Ca2+ influx and occurs mainly in the tiny subplasmalemmal spaces, 3) extracellular Ca2+-induced [Ca2+]c oscillations appear to be triggered not by activation of extracellular Ca2+-sensing receptors but by the ER sensitised by elevated [Ca2+]c and [Ca2+]Lu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号