首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungus Fusarium circinatum causes pitch canker disease on mature pine trees and root rot and damping-off of pine seedlings. Endopolygalacturonases (endoPGs) play a major role during penetration of plants by fungi. Digestion of the pectic polysaccharides in the plant primary cell walls is one of the earliest functions of endoPGs during infection. The research objective was to clone and characterize the gene encoding endopolygalacturonase in F. circinatum. A 970-bp DNA fragment was cloned by using degenerate PCR amplification from F. circinatum DNA. Sequence data for this fragment were used to design specific primers for use in genome walking to amplify and sequence the remaining portion of the F. circinatum endoPG gene (Fcpg). The amino acid sequence predicted from this gene showed 90% and 87% similarity to Fusarium oxysporum and Fusarium moniliforme endoPGs, respectively. Received: 10 August 2000 / Accepted: 30 October 2000  相似文献   

2.
In recent years, interest in the ability of non-pathogenic microorganisms to induce resistance in plants has grown, particularly with respect to their use as environmentally safe controllers of plant disease. In this study, we investigated the capacity of Mucor ramosissimus Samutsevitsch to release pectinases able to degrade cell walls of Palicourea marcgravii St. Hil., a tropical forest native Rubiaceae on which the spores of this saprobic fungus have been found. The fungus was grown in liquid culture medium containing pectin as the sole carbon source and filtrates were analyzed for pectinase activity. An endopolygalacturonase was partially purified by ion exchange chromatography, gel filtration, and preparative isoelectrofocusing, and characterized. This enzyme was more active upon pectic substrates with a low degree of methyl esterification. The products of hydrolysis of different pectic substrates (including pectin from P. marcgravii) by the action of this endopolygalacturonase elicited to different extents the phytoalexin production in soybean cotyledons. Also, the enzyme itself and the products of its action on the pectic fraction of P. marcgravii elicited the production of defensive compounds in the leaves of the plant. These results suggest that, besides the role in recycling organic matter, saprobes may also play an important role in the induction of defensive mechanisms in wild plants by enhancing their non-specific resistance against pathogens. Furthermore, they set the stage for future studies on the role of saprobic fungi in inducing resistance of host plants to pathogens.  相似文献   

3.
4.
It has been clearly established that phytopathogenic fungi, bacteria, and viruses exert biotic stresses on plants. Much less is known, however, about the interactions between enological species of yeast and their host plants. In a previous study, we described how Saccharomyces cerevisiae, the most common enological yeast, can act as a grapevine (Vitis vinifera L.) pathogen, causing growth retardation or plant death. In the present in vitro study on 11 strains of yeast belonging to different genera, which often occur on the surfaces of vineyard grapes and V. vinifera, a link was found to exist between strain phytopathogenecity and pseudohyphal growth habits and/or endopolygalacturonase activity. The results obtained here are consistent with earlier findings showing that the phytopathogenicity of yeast strains depends on the filamentous growth process, and show that endopolygalacturonase alone is not responsible for the invasion of plants tissues. The mechanisms observed here may be of significant ecological importance and may help to explain the long periods of yeast survival found to occur in vineyards.  相似文献   

5.
Expansins are non-enzymatic plant proteins breaking hydrogen bonds between cellulose microfibrils and hemicellulose polymer matrix. Each plant has many expansin genes, whose protein products participate in the regulation of plant growth and development mainly by regulating cell expansion. To analyze the effects of elevated expansin expression on the plant organ sizes, we cloned the AtEXPA10 gene from Arabidopsis thaliana and PnEXPA1 gene from Populus nigra. Transgenic tobacco plants expressing the target genes were obtained. The obtained transgenic tobacco plants were shown to have significantly larger leaves and longer stems compared to control plants. The flowers were quite insignificantly larger, but at the same time transgenic plants had more flowers. The microscopic studies showed that the organs of AtEXPA10-carrying plants were larger mainly due to stimulated cell proliferation, whereas the overexpression of the PnEXPA1 gene activated cell expansion.  相似文献   

6.
Peach fruit are handled, processed, and marketed according to their stone adhesion and fruit softening type. Uncertainty exists over whether these simply inherited traits are controlled by two linked loci, Freestone (F) and Melting flesh (M) or one multi-allelic locus, and whether M is controlled by the cell wall degrading enzyme, endopolygalacturonase. From morphological and molecular analysis of two related segregating populations of peach, we conclude that a single locus containing at least one gene for endopolygalacturonase, controls both F and M with at least three effective alleles. A simple diagnostic PCR test is now available for the three major phenotypes of freestone melting flesh (FMF), clingstone melting flesh (CMF), and clingstone non-melting flesh (CNMF).  相似文献   

7.
The occurrence of DNA modification is an undesired phenomenon accompanying plant cell transformation. The event has been correlated with the stress imposed by the presently utilised transformation procedures, all depending on plant differentiation from in vitro cell culture, but other causes have not been excluded. In this work, transgenic Arabidopsis thaliana plants have been produced by an approach that does not require cell dedifferentiation, being based on in planta Agrobacterium-mediated gene transfer by flower infiltration, which is followed by recovery and selection of transgenic progeny. Genomic DNA changes in transgenic and control plants have been investigated by AFLP and RAMP analysis. Results show no statistically relevant genomic modifications in transgenic plants, as compared with control untreated plants. Variations were observed in callus-derived A. thaliana plants, thus supporting the conclusion that somaclonal variation is essentially correlated with the stress imposed by the in vitro cell culture, rather than with the integration of a foreign gene.  相似文献   

8.
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin‐like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two‐promoter‐driven OsEXTL‐transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%–10%. Meanwhile, the OsEXTL‐transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL‐transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL‐transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL‐transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.  相似文献   

9.
10.
Two cultivars of potato (Solanum tuberosum L.) were transformed with a barley antiporter gene HvNHX2 driven by the CaMV 35S promoter. The expressed transgene conferred a higher NaCl tolerance to one of the cultivars. Under salt stress, the more salt-tolerant transgenic plants had longer roots, higher dry weight, and suppressed cell expansion as compared to wild-type plants. The salt tolerance of the plants grown in vitro was not accompanied by elevated total sodium in any plant organs tested. Instead, higher potassium was found in roots of transgenic plants. Possible mechanisms of plant salt tolerance are discussed.  相似文献   

11.
A novel selection marker for plant transformation alternative to antibiotic and herbicide resistance is described. The selective agent applied is 2-deoxyglucose (2-DOG) which in the cytosol of plant cells is phosphorylated by hexokinase yielding 2-DOG-6-phosphate (2-DOG-6-P). 2-DOG-6-P exerts toxic effects on overall cellular metabolism leading to cell death. We observed that constitutive expression of the yeast DOG R1 gene encoding a 2-DOG-6-P phosphatase resulted in resistance towards 2-DOG in transgenic tobacco plants. This finding was exploited to develop a selection system during transformation of tobacco and potato plants. The lowest concentration of 2-DOG leading to nearly complete inhibition of regeneration of wild-type explants was found to range between 400 and 600 mg/l 2-DOG for tobacco, potato and tomato plants. After Agrobacterium tumefaciens-mediated transformation cells expressing the DOG R1 gene were selected by resistance to 2-DOG. More than 50% of tobacco explants formed shoots and on average 50% of these shoots harboured the DOG R1 gene. Similar results were obtained for potato cv. Solara. The acceptability of the resistance gene derived from baker's yeast, the unobjectionable toxicological data of 2-DOG as well as the normal phenotype of DOG R1-expressing plants support the use of this selection system in crop plant transformation.  相似文献   

12.
The auxin-inducible gene ARGOS from Arabidopsis thaliana is expressed in growing tissues and controls the plant organ size by regulating cell proliferation and meristematic competence. The promoter of the dahlia (Dahlia pinnata Cav.) mosaic virus (DMV) resembles the well-known cauliflower mosaic virus 35S promoter but shows a higher activity in transgenic tobacco plants (Nicotiana tabacum L.). We obtained transgenic tobacco plants expressing the Arabidopsis ARGOS gene under the control of the DMV promoter. Several of the T0 generation plants exhibited an accelerated transition to flowering, a slight increase in flower size, and a significant increase in the leaf size. The T1 transgenic plants were characterized by faster growth, the increased leaf size, and somewhat enlarged flowers as compared with control plants. These phenotypic traits, as well as stability and inheritance of the transgene were demonstrated also in T2 transgenic plants.  相似文献   

13.
14.
钙依赖性蛋白激酶(CDPKs)是一类重要的钙信号感受蛋白和响应蛋白,在植物干旱、低温、盐碱等非生物胁迫应答中起着重要的调控作用。为探讨陆地棉GhCDPK1基因在干旱胁迫下所起的作用,该研究利用实时荧光定量PCR技术分析了PEG模拟干旱胁迫下该基因的表达量,发现GhCDPK1基因受干旱胁迫诱导。通过构建植物表达载体pCAMBIA2300-GhCDPK1,采用农杆菌介导的叶盘法转化模式植物烟草,发现干旱胁迫下转基因植株保水能力明显高于野生型植株,叶绿素、脯氨酸、可溶性蛋白含量及POD、SOD活性也高于野生型植株,而丙二醛含量低于野生型植株。研究结果表明,GhCDPK1基因作为正向调控因子响应干旱胁迫诱导,过表达GhCDPK1基因可以使植株积累更多的渗透调节物质、增强抗氧化系统酶的活性和维持细胞膜的稳定性来提高植物抵御外界干旱胁迫的能力。  相似文献   

15.
Summary Two commercial wheat cultivars with low embryogenesis efficiencies, AC Karma and Hy417, were transformed by the bombardment of isolated scutella with two gene constructs. Three AC Karma plants (433, 436, and 437) carrying plasmid pRC62 containing a gus:npt fusion gene, and one Hy417 plant (438) carrying plasmid pBARGUS containing a bar gene and a gusA gene were recovered and characterized. Presence of transgenes in T0 and T1 plants was confirmed by both PCR and Southern hybridization. Copy number of transgenes varied from one to six in these four plants. The inheritance of transgenes in the progeny was characterized. The gusA gene and its activity in AC Karma plant 436 and bar gene and its activity in Hy417 plant 438 segregated in the selfed T1 progeny in a Mendelian 3:1 ratio, but gusA gene and its activity in AC Karma plants 433 and 437 segregated in selfed T1 progeny in a non-Mendelian 1:1 ratio. The gusA activity in all three AC Karma plants was stably transmitted to selfed T2 or T3 progenies. The levels of gusA and nptII activities in nine T1 plants from AC Karma plant 437 were also determined. A GusA fluorometric assay indicated that gusA activity in the nine T1 plants increased by 2.5–7.2-fold compared with the nontransformed control, while and NptII ELISA assay detected nptII activity only in two of the nine T1 plants, suggesting the nptII gene was silenced in the other seven T1 plants.  相似文献   

16.
17.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

18.
该研究利用海岛棉‘新海21’和陆地棉ND203以及模式植物拟南芥,通过转基因及荧光定量检测等方法探究海岛棉GbHCT13基因(GenBank 登录号MW048849)在纤维发育中的功能。结果显示:(1)成功构建重组载体pCAMBIA3301 GbHCT13,经农杆菌介导法转化、除草剂抗性基因筛选、荧光定量检测方法鉴定获得转GbHCT13基因拟南芥T3代植株4株;qRT PCR检测表明,转基因植株中GbHCT13基因表达量较野生型极显著增加。(2)转基因拟南芥过表达GbHCT13基因使植株同一时期的生长较野生型旺盛,株形、叶片数、抽薹数和茎秆表皮毛数量均与野生型存在差异;组织化学分析发现,转GbHCT13基因的拟南芥较野生型茎秆初生木质部生长活跃,导管增粗,次生木质部导管细胞壁横截面积变大,但髓质细胞无明显变化;过表达GbHCT13使拟南芥中木质素合成途径基因发生不同程度改变,其中CADCCoAOMTPAL和4CLGbHCT13基因的表达呈正相关。(3)经大田筛选、分子鉴定,成功获得转GbHCT13基因棉花植株3株;转GbHCT13基因棉花的棉纤维伸长率增加,纤维强度增大;沉默GbHCT13基因使棉花植株木质素含量降低,茎秆表皮毛数量减少,木质部导管细胞数量减少,导管细胞壁中木质素沉积量降低,而棉株并未发生株高上的明显矮化现象,且木质素合成通路中的CADCCoAOMTCCRPAL 4个基因的表达均呈降低趋势,说明抑制GbHCT13使得棉花生长代谢受阻,影响纤维发育起始。研究表明,GbHCT13基因能影响棉花植株中木质素合成从而调控纤维的生长发育,其功能与GbHCT13基因在模式植物拟南芥中的基本一致。  相似文献   

19.
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S2 constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.  相似文献   

20.
The effect of introduction of the Zephyranthes grandiflora agglutinin gene (zga) to tobacco on its anti-pest ability for peach-potato aphids was investigated. PCR analysis confirmed that the zga gene was integrated into the plant genome. The results from semi-quantitative RT-PCR and real-time PCR assays revealed that the zga gene was expressed at various levels in the transgenic plants. A bioassay with aphids indicated that transgenic plants conferred enhanced resistance to aphids. Compared with the controls, the average number of aphids fed with transgenic plants during a 20-day assay evidently decreased by 70.4% in leaf disc bioassay and 77.9% in whole plant bioassay. The average number of nymph was significantly reduced by 36.4% on zga-expressing plants in leaf disc bioassay and 35.6% in whole plant bioassay. The report indicated that the introduction of zga gene to tobacco plants is a useful method to improve its anti-pest ability for aphids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号