首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The DEL1 mutator in Saccharomyces cerevisiae leads to the formation of deletions adjacent to itself (Liebman et al. 1979). Here we show that the frequency of these DEL1-promoted deletions is not altered by the presence of the recombination-deficient mutation, rad52-1. This indicates that generalized recombination is not required for the formation of deletions in DEL1 yeast strains.  相似文献   

2.
Summary A mutant plasmid, pX, derived from the 1453 base pair small plasmid, YARp1 (or TRP1 RI circle), consists of 849 base pairs of DNA bearing the TRP1 gene and the ARS1 sequence of Saccharomyces cerevisiae and, unlike YARp1 and other commonly used yeast plasmids, highly multimerizes in a S. cerevisiae host. The multimerization of pX was dependent on RAD52, which is known to be necessary for homologous recombination in S. cerevisiae. Based upon this observation, a regulated system of multimerization of pX with GAL1 promoter-driven RAD52 has been developed. We conclude that the regulated multimerization of pX could provide a useful model system to study genetic recombination in the eukaryotic cell, in particular to investigate recombination intermediates and the effects of various trans-acting mutations on the multimerization and recombination of plasmids.  相似文献   

3.
Summary Various gene fusions between the arginine permease and invertase have been constructed in order to obtain information about whether part of the CAN1 gene product can induce secretion of biologically active invertase missing its own signal sequence. A construction containing 30 N-terminal amino acid residues of the CAN1 gene product fused to invertase was not secreted. When the CAN1 portion was elongated to 477 or 560 amino acid residues, secretion of the fusion proteins was observed. A fusion lacking 59 amino acids at the amino-terminal end of the arginine permease was also secreted. These results indicate that the amino-terminal end of the arginine permease is neither sufficient nor essential for membrane insertion; instead this enzyme should contain an internal targeting sequence facilitating secretion. Some general implications on the biosynthesis and topology of membrane proteins are also discussed as well as the homology with histidine permease.  相似文献   

4.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

5.
In Saccharomyces cerevisiae the metabolite phosphoribosyl-pyrophosphate (PRPP) is required for purine, pyrimidine, tryptophan and histidine biosynthesis. Enzymes that can synthesize PRPP can be encoded by at least four genes. We have studied 5-phospho-ribosyl-1(α)-pyrophosphate synthetases (PRS) genetically and biochemically. Each of the four genes, all of which are transcribed, has been disrupted in haploid yeast strains of each mating type and although all disruptants are able to grow on complete medium, differences in growth rate and enzyme activity suggest that disruption of PRS1 or PRS3 has a significant effect on cell metabolism, whereas disruption of PRS2 or PRS4 has little measurable effect. Using Western blot analysis with antisera raised against peptides derived from the non-homology region (NHR) and the N-terminal half of the PRS1 gene product it has been shown that the NHR is not removed by protein splicing. However, the fact that disruption of this gene causes the most dramatic decrease in cell growth rate and enzyme activity suggests that Prs1p may have a key structural or regulatory role in the production of PRPP in the cell. Received: 15 July 1996 / Accepted: 24 October 1996  相似文献   

6.
7.
8.
9.
10.
The MBR1 gene was isolated as a multicopy suppressor of the phenotype on glycerol medium of a Saccharomyces cerevisiae strain mutant for the Hap2/3/4/5 transactivator complex. In this paper, we show that Mbr1p is a limiting factor for growth on glycerol medium under the following sub-optimal culture conditions: in late growth phase, at low temperature, at high external pH or in the presence of 1,10-phenanthroline. Moreover, deletion of MBR1 prot- ects cells against stress, whilst overexpression of this gene has the opposite effect. MBR1 expression is induced in the late growth phase and is negatively controlled by the cAMP-dependent protein kinase A (PKA). Both activation of PKA or overexpression of SOK1 or SCH9– two genes isolated as multicopy suppressors of a PKA null mutant – suppress the mbr1 growth defect. Our results indicate that Mbr1p is not an essential element of any one of these pathways. Deletion of SAC1, a gene implicated in vesicular transport, in association with MBR1 deletion, causes synthetic lethality. A possible role of Mbr1p in intracellular trafficking is discussed. Received: 17 January 1997 / Accepted: 20 March 1997  相似文献   

11.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

12.
The nucleolar protein Nop2p is an essential gene product that is required for pre-rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae (Hong, B. et al., 1997, Mol. Cell. Biol., 17, 378–388). A search for proteins similar to Nop2p identified a novel yeast gene product that also shares significant homology with the human proliferation associated nucleolar protein p120. The gene encoding this 78 kDa protein was termed NCL1 (for nuclear protein 1; corresponding to YBL024w). Ncl1p and Nop2p contain an evolutionarily conserved motif that has been termed the ‘NOL1/NOP2/fmu family signature' (NOL1 encodes p120). Epitope tagged Ncl1p was found to be localized to the nucleus, including the nucleolus, and was concentrated at the nuclear periphery. NCL1 is not essential. Strains containing a disruption of NCL1, or strains overexpressing NCL1, grow essentially identically to wildtype NCL1 strains on a number of different media and at different temperatures. Disruption of NCL1 does not affect steady-state levels of large and small ribosome subunits, monoribosomes, and polyribosomes. However, disruption of NCL1 leads to increased sensitivity to the antibiotic paromomycin.  相似文献   

13.
14.
Homothallic Saccharomyces cerevisiae strains switch their mating-type in a specific gene conversion event induced by a DNA double strand break made by the HO endonuclease. The RAD52 group genes control recombinational repair of DNA double strand breaks, and we examined their role in native homothallic mating-type switching. Surprisingly, we found that the Rad54 protein was important but not essential for mating-type switching under natural conditions. As an upper limit, we estimate that 29% of the rad54 spore clones can successfully switch their mating-type. The RAD55 and RAD57 gene products were even less important, but their presence increased the efficiency of the process. In contrast, the RAD51 and RAD52 genes are essential for homothallic mating-type switching. We propose that mating-type switching in RAD54 mutants occurs stochastically with a low probability, possibly reflecting different states of chromosomal structure. Received: 3 August 1998 / Accepted: 22 September 1998  相似文献   

15.
16.
Phosphoenolpyruvate carboxykinase is a key enzyme in gluconeogenesis. The expression of the PCK1 gene in Saccharomyces cerevisiae is strictly regulated and dependent on the carbon source provided. Two upstream activation sites (UAS1PCK1 and UAS2PCK1) and one upstream repression site (URSPCK1) were localized by detailed deletion analysis. The efficacy of these three promoter elements when separated from each other was confirmed by investigations using heterologous promoter test plasmids. Activation mediated by UAS1PCK1 or UAS2PCK1 did not occur in the presence of glucose, indicating that these elements are essential for glucose derepression. The repressing effect caused by URSPCK1 was much stronger in glucose-grown cells than in ethanol-grown cells.  相似文献   

17.
Leucine uptake by Saccharomyces cerevisiae is mediated by three transport systems, the general amino acid transport system (GAP), encoded by GAP1, and two group-specific systems (S1 and S2), which also transport isoleucine and valine. A new mutant defective in both group-specific transport activities was isolated by employing a gap1 leu4 strain and selecting for trifluoroleucine-resistant mutants which also showed greatly reduced ability to utilize l-leucine as sole nitrogen source and very low levels of [14C]l-leucine uptake. A multicopy plasmid containing a DNA fragment which complemented the leucine transport defect was isolated by selecting for transformants that grew normally on minimal medium containing leucine as nitrogen source and subsequently assaying [14C]l-leucine uptake. Transformation of one such mutant, lep1, restored sensitivity to trifluoroleucine. The complementing gene, designated LEP1, was subcloned and sequenced. The LEP1 ORF encodes a large protein that lacks characteristics of a transporter or permease (i.e., lacks hydrophobic domains necessary for membrane association). Instead, Lep1p is a very basic protein (pI of 9.2) that contains a putative bipartite signal sequence for targeting to the nucleus, suggesting that it might be a DNA-binding protein. A database search revealed that LEP1 encodes a polypeptide that is identical to Sac3p except for an N-terminal truncation. The original identification of SAC3 was based on the isolation of a mutant allele, sac3-1, that suppresses the temperature-sensitive growth defect of an actin mutant containing the allele act1-1. Sac3p has been previously shown to be localized in the nucleus. When a lep1 mutant was crossed with a sac3 deletion mutant, no complementation was observed, indicating that the two mutations are functionally allelic. Received: 6 January 1999 / Accepted: 4 June 1999  相似文献   

18.
19.
20.
Using a genetic system of haploid strains of Saccharomyces cerevisiae carrying a duplication of the his4 region on chromosome III, the pso3-1 mutation was shown to decrease the rate of spontaneous mitotic intrachromosomal recombination 2- to 13-fold. As previously found for the rad52-1 mutant, the pso3-1 mutant is specifically affected in mitotic gene conversion. Moreover, both mutations reduce the frequency of spontaneous recombination. However, the two mutations differ in the extent to which they affect recombination between either proximally or distally located markers on the two his4 heteroalleles. In addition, amplifications of the his4 region were detected in the pso3-1 mutant. We suggest that the appearance of these amplifications is a consequence of the inability of the pso3-1 mutant to perform mitotic gene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号