首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Paul RK  Takeuchi H  Kubo T 《Zoological science》2006,23(12):1085-1092
We previously demonstrated that two ecdysteroid-regulated genes, Mblk-1/E93 and E74, are expressed selectively in Kenyon cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.) brain. To further examine the possible involvement of ecdysteroid-regulated genes in brain function as well as in oogenesis in the honeybee, we isolated cDNAs for two other ecdysteroid-regulated genes, Broad-Complex (BR-C) and E75, and analyzed their expression in the worker brain as well as in the queen abdomen. In situ hybridization revealed that BR-C, like Mblk-1/ E93, is expressed selectively in the large-type Kenyon cells of the mushroom bodies in the worker brain, whereas E75 is expressed in all mushroom body neuron subtypes, suggesting a difference in the mode of response to ecdysteroid among Kenyon cell subtypes. In the queen ovary, both BR-C and E75 are expressed preferentially in the follicle cells that surround egg cells at the late stage, suggesting their role in oogenesis. These results suggest that BR-C and E75 are involved in the regulation of brain function as well as in reproductive physiology in the adult honeybee.  相似文献   

3.
4.
cAMP-dependent protein kinase (PKA) has been suggested to interfere with T-cell activation by inhibiting interleukin (IL-2) receptor alpha-chain (CD25) expression and IL-2 production. The Ras/MAP kinase pathway has been found to be necessary for induction of the IL-2 production. In this study, we have scrutinized the Ras/MAP kinase pathway in Jurkat T-cells to attempt to identify any sites for PKA-mediated regulatory phosphorylations. Here we unambiguously demonstrate that PKA directly inhibits anti-CD3-induced MAP kinase activation. In vitro phosphorylation experiments showed that Raf-1 was extensively phosphorylated by PKA, while ERK2 and MEK were not. Phosphopeptide mapping identified Ser-43 of Raf-1 as the only site phosphorylated by PKA in the Ras/MAPK pathway. Transient transfection experiments demonstrated that mutations of Ser-43 of the Raf-1 kinase were rendered insensitive to cAMP-mediated inhibition.  相似文献   

5.
Phosphatase plays a crucial role in determining cellular fate by inactivating its substrate kinase, but it is not known whether a kinase can vice versa phosphorylate its phosphatase to execute this function. Protein-tyrosine phosphatase H1 (PTPH1) is a specific phosphatase of p38γ mitogen-activated protein kinase (MAPK) through PDZ binding, and here, we show that p38γ is also a PTPH1 kinase through which it executes its oncogenic activity and regulates stress response. PTPH1 was identified as a substrate of p38γ by unbiased proteomic analysis, and its resultant phosphorylation at Ser-459 occurs in vitro and in vivo through their complex formation. Genetic and pharmacological analyses showed further that Ser-459 phosphorylation is directly regulated by Ras signaling and is important for Ras, p38γ, and PTPH1 oncogenic activity. Moreover, experiments with physiological stimuli revealed a novel stress pathway from p38γ to PTPH1/Ser-459 phosphorylation in regulating cell growth and cell death by a mechanism dependent on cellular environments but independent of canonical MAPK activities. These results thus reveal a new mechanism by which a MAPK regulates Ras oncogenesis and stress response through directly phosphorylating its phosphatase.  相似文献   

6.
7.
8.
Lin HY  Tang HY  Shih A  Keating T  Cao G  Davis PJ  Davis FB 《Steroids》2007,72(2):180-187
Thyroid hormone (l-thyroxine, T(4), or 3,5,3'-triiodo-l-thyronine, T(3)) treatment of human papillary and follicular thyroid cancer cell lines resulted in enhanced cell proliferation, measured by proliferating cell nuclear antigen (PCNA). Thyroid hormone also induced activation of the Ras/MAPK (ERK1/2) signal transduction pathway. ERK1/2 activation and cell proliferation caused by thyroid hormone were blocked by an iodothyronine analogue, tetraiodothyroacetic acid (tetrac), that inhibits binding of iodothyronines to the cell surface receptor for thyroid hormone on integrin alphaVbeta3. A MAPK cascade inhibitor at MEK, PD 98059, also blocked hormone-induced cell proliferation. We then assessed the possibility that thyroid hormone is anti-apoptotic. We first established that resveratrol (10 microM), a pro-apoptotic agent in other cancer cells, induced p53-dependent apoptosis and c-fos, c-jun and p21 gene expression in both papillary and follicular thyroid cancer cells. Induction of apoptosis by the stilbene required Ser-15 phosphorylation of p53. Resveratrol-induced gene expression and apoptosis were inhibited more than 50% by physiological concentrations of T(4). T(4) activated MAPK in the absence of resveratrol, caused minimal Ser-15 phosphorylation of p53 and did not affect c-fos, c-jun and p21 mRNA abundance. Thus, plasma membrane-initiated activation of the MAPK cascade by thyroid hormone promotes papillary and follicular thyroid cancer cell proliferation in vitro.  相似文献   

9.
In addition to VPAC1 and VPAC2, PAC1 is involved in the pleiotropic action of pituitary adenylate cyclase activating polypeptide (PACAP) in the CNS. A luciferase reporter assay for the human PAC1 gene (-2160/+268) revealed that NGF treatment significantly augments the promoter activity of the PAC1 gene. Moreover, the Sp1 site at -282/-273 was shown to be essential for the NGF-augmented promoter activity of the PAC1 gene. Treatment with U0126, an MEK inhibitor, or Mithramycin A, an Sp1 inhibitor, significantly attenuated promoter activity. These results indicate that activation of Sp1 by the Ras/MAPK pathway might participate in neuron specific expression of the PAC1 gene.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号