首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature dependence and mercury inhibition of tonoplast-type H+-ATPase   总被引:5,自引:0,他引:5  
The effects of changing temperature on ATP hydrolysis and proton pumping associated with the H+-ATPase of tonoplast membrane vesicles isolated from the maize root microsomal fraction were determined. In the range 5 to 45 degrees C, the maximal initial rate of ATP hydrolysis obeyed a simple Arrhenius model and the activation energy determined was approximately 14 kcal/mol. On the other hand, the initial proton pumping rate showed a bell-shaped temperature dependence, with maximum activity around 25 degrees C. Lineweaver-Burke analysis of the activities showed that the Km of ATP hydrolysis, unlike that of proton pumping, was relatively insensitive to temperature changes. Detailed kinetic analysis of the proton pumping process showed that the increase in membrane leakage to protons during the pumping stage constituted a major reason for the decreased transport. Nitrate-sensitive ATPase activities of the tonoplast vesicles were found to be inhibited by the presence of micromolar concentrations of Hg2+. The proton pumping process was more sensitive to the presence of Hg2+. Double-reciprocal analysis of kinetic data indicated that Hg2+ was a noncompetitive inhibitor of proton pumping but was an uncompetitive inhibitor of ATP hydrolysis. Further kinetic analysis of Hg2+ effects revealed that the lower proton transport did not result from enhanced membrane leakage but rather from reduced coupling between H+ pumping and ATP hydrolysis.  相似文献   

2.
A continuous spectrophotometric assay of H+-ATPase activity was developed by combining two well-known methods for measuring proton pumping and ATPase activity. Proton uptake into plasma membrane vesicles from Avena sativa L. (cv Rhiannon) was monitored as the absorbance decrease at 495 nm of the ΔpH probe acridine orange. Simultaneously, ATPase activity was measured by following the absorbance decrease at 340 nanometers by coupling ATP hydrolysis enzymatically to the oxidation of NADH. This H+-ATPase assay is convenient for determining the relative relationship between ATP hydrolysis and proton pumping.  相似文献   

3.
The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi.  相似文献   

4.
The native tonoplast and the mitochondrial H+-ATPase from oat roots were compared to determine whether the two enzymes have similar mechanisms. H+ pumping in low-density microsomal vesicles reflected activity from the tonoplast-type ATPase, as ATPase activity and ATP-dependent H+ pumping (quinacrine fluorescence quenching) showed similar sensitivities to inhibition by N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide, 4,4'-diisothiocyano-2,2'-stilbene disulfonate, nitrate, quercetin, or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. The tonoplast-type ATPase was stimulated by C1-,Br- greater than HCO3- whereas the mitochondrial ATPase was stimulated by HCO3- much greater than C1-,Br-. Both enzymes hydrolyzed ATP preferentially and were inhibited competitively by AMP or ADP. Apart from resistance to azide, the tonoplast-type ATPase was strikingly similar in its inhibitor sensitivities to the mitochondrial ATPase. The insensitivity to vanadate of both enzymes suggests the reaction mechanisms do not involve a covalent phosphoenzyme. Inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide and protection by ATP suggests tyrosine and cysteine residues are in the catalytic site of the tonoplast ATPase. The mitochondrial ATPase was 100 times more sensitive to N,N'-dicyclohexyl-carbodiimide inhibition than the tonoplast H+-ATPase. These results suggest the tonoplast and the mitochondrial H+-ATPases share common steps in their catalytic and vectorial reaction mechanisms, yet sufficient differences exist to indicate they are two distinct ATPases.  相似文献   

5.
The ATP synthase in chromatophores of Rhodobacter caspulatus can effectively generate a transmembrane pH difference coupled to the hydrolysis of ATP. The rate of hydrolysis was rather insensitive to the depletion of ADP in the assay medium by an ATP regenerating system (phospho-enol-pyruvate (PEP) and pyruvate kinase (PK)). The steady state values of DeltapH were however drastically reduced as a consequence of ADP depletion. The clamped concentrations of ADP obtained using different PK activities in the assay medium could be calculated and an apparent Kd approximately 0.5 microM was estimated. The extent of proton uptake was also strongly dependent on the addition of phosphate to the assay medium. The Kd for this effect was about 70 microM. Analogous experiments were performed in membrane fragment from Escherichia coli. In this case, however, the hydrolysis rate was strongly inhibited by Pi, added up to 3 mM. Inhibition by Pi was nearly completely suppressed following depletion of ADP. The Kd's for the ADP and Pi were in the micromolar range and submillimolar range, respectively, and were mutually dependent from the concentration of the other ligand. Contrary to hydrolysis, the pumping of protons was rather insensitive to changes in the concentrations of the two ligands. At intermediate concentrations, proton pumping was actually stimulated, while the hydrolysis was inhibited. It is concluded that, in these two bacterial organisms, ADP and phosphate induce a functional state of the ATP synthase competent for a tightly coupled proton pumping, while the depletion of either one of these two ligands favors an inefficient (slipping) functional state. The switch between these states can probably be related to a structural change in the C-terminal alpha-helical hairpin of the epsilon-subunit, from an extended conformation, in which ATP hydrolysis is tightly coupled to proton pumping, to a retracted one, in which ATP hydrolysis and proton pumping are loosely coupled.  相似文献   

6.
In many cells other than the erythrocyte, the relationship between ATP dependent calcium transport and calcium dependent ATP hydrolysis is complex. The characteristics of ATP hydrolysis often differ from those of calcium transport. Demonstration of a specific transport ATPase is complicated by heterogeneity and high background activity in the presence of magnesium. In basal plasma membrane of human placental syncytiotrophoblast, the addition of 5 mM GTP greatly reduces the background release of 32Pi from 0.1 mM [gamma, 32P]-ATP. The addition of GTP permits measurement of high affinity calcium dependent ATPase under conditions which support calcium uptake. GTP does not affect the velocity of calcium uptake, and in its presence the calcium and magnesium concentration dependence of calcium uptake and calcium dependent ATPase are similar.  相似文献   

7.
Chanson A  Taiz L 《Plant physiology》1985,78(2):232-240
Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on sucrose density gradients, and ATP-dependent proton pumping activity was localized by the techniques of [14C]methylamine uptake and quinacrine fluorescence quenching. Two peaks of proton pumping activity were detected: a light peak (1.07 grams/cubic centimeter) corresponding to the previously characterized tonoplast-type H+-ATPase, and a second peak (1.13 grams/cubic centimeter) which coincided with the Golgi markers, latent UDPase, and glucan synthase I. The second peak was lighter than that of the plasma membrane marker, uridine diphosphoglucose-sterol glucosyltransferase (1.16 grams/cubic centimeter) and was not inhibited by vanadate, an inhibitor of the plasma membrane ATPase. The activity was also better correlated with the Golgi cisternae marker, glucan synthase I, than with latent UDPase, a secretory vesicle marker, but a secretory vesicle location cannot be ruled out. The tonoplast-type and Golgi proton pumps were similar in several respects, including a pH optimum at 7.2, stimulation by chloride, inhibition by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide (DCCD), insensitivity to oligomycin and azide, and nucleotide specificity for Mg2+-ATP. However, the Golgi H+ pump was much less sensitive to nitrate and iodide, and more sensitive to the anion channel blockers, 4-acetamido-4′-isothiocyano-2,2′-stilbene sulfonic acid (SITS) and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) than the tonoplast-type H+-pump. The Golgi pump, but not the tonoplast-type pump, was stimulated by valinomycin in the presence of KCl. It is concluded that the Golgi of corn coleoptiles contains a KCl-stimulated H+-ATPase which can acidify the interior of Golgi cisternae and associated vesicles.  相似文献   

8.
Duckweed plants (Spirodela oligorrhiza) grown under phosphate (Pi)-deficient conditions (- P plants) exhibited more than 50-fold higher Pi uptake activity than plants grown under Pi-sufficient conditions (+ P plants). The Pi uptake activity of - P plants measured using (32)Pi was significantly inhibited by carbonylcyanide m-chlorophenylhydrazone, indicating that Pi uptake is energized by the electrochemical proton gradient across the plasma membrane (PM). When Pi uptake was examined at various concentrations of Pi, more active uptake of Pi was observed in - P plants than in + P plants, irrespective of the Pi concentrations. An immunoblot analysis of the PM proteins using antiserum against the conserved sequence of the high-affinity Pi transporter recognized the occurrence and large accumulation of a novel protein band at 48 kDa in - P plants. The protein was almost completely extracted with chloroform-methanol (2:1, v/v), but only a trace amount of the protein was detected in + P plants. Immunohistochemical studies of plant roots using the same antiserum demonstrated a large accumulation of high-affinity Pi transporters at the outermost cortical cells of - P plants, but not of + P plants. When an immunoblot analysis of PM proteins was performed using antiserum against the PM H(+)-ATPase, a positive band of about 96 kDa was detected in both plants with a similar signal intensity. Furthermore, ATP-hydrolytic and ATP-dependent H(+)-transporting activities of PM H(+)-ATPase in - P plants were not higher than those in + P plants. However, kinetic analyses showed that the PM H(+)-ATPase in - P plants had a lower K(m) value and a higher coupling efficiency between ATP hydrolysis and H(+) pumping than the corresponding values in + P plants. These results suggest that the significant stimulation of Pi uptake in - P plants may be due mainly to the induction and accumulation of the high-affinity Pi transporter in the PM, and that the electrochemical proton gradient across the PM may be generated by the high-ATP-affinity and energy-efficient H(+) pump in - P plants. This would facilitate the acquisition of Pi in S. oligorrhiza under Pi-depleted conditions.  相似文献   

9.
The role of the C-domain of the epsilon subunit of ATP synthase was investigated by fusing either the 20-kDa flavodoxin (Fd) or the 5-kDa chitin binding domain (CBD) to the N termini of both full-length epsilon and a truncation mutant epsilon(88-stop). All mutant epsilon proteins were stable in cells and supported F1F0 assembly. Cells expressing the Fd-epsilon or Fd-epsilon(88-stop) mutants were unable to grow on acetate minimal medium, indicating their inability to carry out oxidative phosphorylation because of steric blockage of rotation. The other forms of epsilon supported growth on acetate. Membrane vesicles containing Fd-epsilon showed 23% of the wild type ATPase activity but no proton pumping, suggesting that the ATP synthase is intrinsically partially uncoupled. Vesicles containing CBD-epsilon were indistinguishable from the wild type in ATPase activity and proton pumping, indicating that the N-terminal fusions alone do not promote uncoupling. Fd-epsilon(88-stop) caused higher rates of uncoupled ATP hydrolysis than Fd-epsilon, and epsilon(88-stop) showed an increased rate of membrane-bound ATP hydrolysis but decreased proton pumping relative to the wild type. Both results demonstrate the role of the C-domain in coupling. Analysis of the wild type and epsilon(88-stop) mutant membrane ATPase activities at concentrations of ATP from 50 mum to 8 mm showed no significant dependence of the ratio of bound/released ATPase activity on ATP concentration. These results support the hypothesis that the main function of the C-domain in the Escherichia coli epsilon subunit is to reduce uncoupled ATPase activity, rather than to regulate coupled activity.  相似文献   

10.
The energetics of nitrate uptake by intact cells of the halotolerant cyanobacterium Aphanothece halophytica were investigated. Nitrate uptake was inhibited by various protonophores suggesting the coupling of nitrate uptake to the proton motive force. An artificially-generated pH gradient across the membrane (DeltapH) caused an increase of nitrate uptake. In contrast, the suppression of DeltapH resulted in a decrease of nitrate uptake. The increase of external pH also resulted in an enhancement of nitrate uptake. The generation of the electrical potential across the membrane (Deltapsi) resulted in no elevation of the rate of nitrate uptake. On the other hand, the valinomycin-mediated dissipation of Deltapsi caused no depression of the rate of nitrate uptake. Thus, it is unlikely that Deltapsi participated in the energization of the uptake of nitrate. However, Na(+)-gradient across the membrane was suggested to play a role in nitrate uptake since monensin which collapses Na(+)-gradient strongly inhibited nitrate uptake. Exogenously added glucose and lactate stimulated nitrate uptake in the starved cells. N, N'-dicyclohexylcarbodiimide, an inhibitor of ATPase, could alsoinhibit nitrate uptake suggesting that ATP hydrolysis was required for nitrate uptake. All these results indicate that nitrate uptake in A. halophytica is ATP-dependent, driven by DeltapH and Na(+)-gradient.  相似文献   

11.
通过不连续蔗糖密度梯度离心得到的液泡膜微囊 ,先由胆酸钠和 OG分步破膜抽提、经阴离子交换柱 ( Q- Sepharose)层析分离 .纯化后的酶含 V型 H+ - ATPase的主要亚基 ,与大豆磷脂重组 ,获得了有较高泵活性的脂酶体 .脂酶体的质子泵活性受 Valinomycin激活 ,说明它是致电性的 ,受NO-3 ,DCCD以及特异性的 V型 ATPase抑制剂 Bafilomycin的抑制 .脂酶体的泵活性不受 F型和P型 ATPase抑制剂抑制 ,表明质子转运是由 V型 H+ - ATPase引起的 .  相似文献   

12.
Plasma membrane vesicles of high purity, determined by markerenzyme assays, were obtained by phase partitioning microsomalfractions from stelar and cortical tissues of Zea mays (cv.LG11) roots. ATP hydrolytic activities in both of the plasmamembrane fractions were inhibited by vanadate, SW26 and erythrosinB, but were insensitive to nitrate. Activity in both fractionsexhibited a marked pH optimum of 6·5 and displayed typicalMichaelis-Menten kinetics. A high substrate specificity wasapparent in both the stele and cortex plasma membrane fractions,while the lower fractions, after phase partitioning, showedlower specificity for nucleotide substrates. Specific activitiesof the stele (67·8 µmol Pi mg–1 h–1)and cortex (78·4 µmol Pi mg–1 h–1)plasma membrane H+ -ATPases were very similar. Proton pumping activities in microsomal membrane fractions fromstele and cortex were inhibited by nitrate and insensitive tovanadate. Homogenization of stele and cortex tissue in the presenceof 250 mol m–3 KI resulted in microsomal fractions exhibitingvanadate-sensitive, nitrate-insensitive proton pumping activity,suggesting a plasma membrane origin for this activity. SW26was also an effective inhibitor of proton pumping activity,although results indicated an interaction between SW26 and thefluorescent probes quinacrine and acridine orange. The results are discussed in relation to models for the transportof ions into the stele and are consistent with a role for theH+ -ATPase activity in this process. Key words: ATPase, cortex, plasma membrane, stele, Zea mays  相似文献   

13.
At very low concentrations (less than 1 muM) triphenyltin chloride inhibits ATP formation and coupled electron transport in isolated spinach chloroplasts. Basal (-Pi) and uncoupled electron transport are not affected by triphenyltin. The membrane-bount ATP in equilibrium Pi exchange and Mg2+-dependent ATPase activities of chloroplasts are also completely sensitive to triphenyltin, although the Ca2+-dependent and Mg2+-dependent ATPase activities of the isolated coupling factor protein are insensitive to triphenyltin. The light-driven proton pump in chloroplasts is stimulated (up to 60%) by low levels of triphenyltin. Indeed, the amount of triphenyltin necessary to inhibit ATP formation or stimulate proton uptake is dependent upon the amount of chloroplasts present in the reaction mixture, with an apparent stoichiometry of 2-2.5 triphenyltin molecules/100 chlorophyll molecules at 50% inhibition of ATP formation and half-maximal stimulation of proton uptake. Chloroplasts partially stripped of coupling factor by an EDTA was are no longer able to accumulate protons in the light. However, low levels of triphenyltin can effectively restore this ability. The amount of triphenyltin required for the restoration of net proton uptake is also dependent upon the amount of chloroplasts, with a stoichiometry of 4-5 triphenyltin molecules/100 chlorophyll molecules at 50% reconstitution. On the basis of this and other evidence it is concluded that triphenyltin chloride inhibits phosphorylation.Atp in equilibrium Pi exchange and membrane-bound ATPase activities in chloroplasts by specifically blocking the transport of protons through a membrane-bound carrier or channel located in a hydrophobic region of the membrane at or near the functional binding site for the coupling factor.  相似文献   

14.
Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.  相似文献   

15.
The plasma membrane vesicles were purified from soybean ( Glycine max L. ) hypocotyls by two-phase partitioning methods. The stimulatory effects of K+ on the coupling between ATP hydrolysis and proton transport by the plasma membrane H+-ATPase were studied. The results showed that the proton transport activity was increased by 850% in the presence of 100 mmol/L KC1, while ATP hydrolytic activity was only increased by 28.2%. Kinetic studies showed that Km of ATP hydrolysis decreased from 1.14 to 0.7 mmol/L, while Vmax of ATP hydrolysis increased from 285.7 to 344.8 nmol Pi·mg- l protein·min-1 in the presence of KC1. Experiments showed that the optimum pH was 6.5 and 6.0 in the presence and absence of KC1, respectively. Further studies revealed that K+ could promote the inhibitory effects of hydroxylamines and vanadates on the ATP hydrolytic activity. The above results suggested that K+ could regulate the coupling between ATP hydrolysis and proton transport of the plasma membrane H+ -ATPase through modulating the structure and function of the kinase and phosphatase domains of the plasma membrane H + -ATPase.  相似文献   

16.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

17.
A high rate of nitrate uptake was observed in Nostoc muscorum when cells were grown on elemental nitrogen as compared to that when they were grown on nitrate or ammonium. The uptake of nitrate was light dependent. However, supplementation with ATP (50 μM) stimulated nitrate uptake both in light and darkness. ADP, under similar conditions had no effect. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-n-heptyl-4-hydroxyquinoline, (HOQNO) and KCN inhibitied nitrate uptake in light which could be partially reversed by adition of ATP. Inhibitiion by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler of photophosphorylation, was complete and could not be restored by the addition of ATP. N,N′-dicyclohexylcarbodiimide (DCCD), a specific inhibitor of ATPase, blocked nitrate uptake in the presence or absence of externally added ATP. Although no nitrate uptake was observed under anaerobic conditions in dark, addition of ATP resulted in uptake of nitrate, which was similar in magnitude to that observed under aerobic condition in the light, and was inhibited by DCCD. Ammonium ions inhibited the uptake of nitrate in the absence of ATP but in its presence there was simultaneous uptake of nitrate and ammonium ions. However, uptake of ammonium ions alone was not affected by presence or absence of ATP in the external medium. It was concluded that nitrate ion uptake was energy dependent and may be linked with a proton gradient which can be formed either by photophosphorylation or ATP hydrolysis.  相似文献   

18.
Zharova TV  Vinogradov AD 《Biochemistry》2006,45(48):14552-14558
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase).  相似文献   

19.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

20.
Diethylstilbestrol (DES) was found to inhibit reversibly the hydrolysis of MgATP (80% at 100 microM) and proton pump activity (I50 approximately equal to 15 microM, complete at 100 microM) in chromaffin granule ghosts. The parallel inhibition suggests a tight kinetic coupling between the two activities. The Mg2+-ATPase activity, but not proton pumping, was partially restored by N,N'-dicyclohexylcarbodiimide, indicating that the two inhibitors in combination cause a partial uncoupling. The non-competitive type of inhibition shows that the action of DES is distal to the site of ATP binding and hydrolysis. Although unspecific, the interaction of DES with the chromaffin granule membrane seems primarily to affect the H+-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号