首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Human Cytomegalovirus (HCMV), an ubiquitous β-herpesvirus, is a significant pathogen that causes medically severe diseases in immunocompromised individuals and in congenitally infected neonates. RhoB belongs to the family of Rho GTPases, which regulates diverse cellular processes. Rho proteins are implicated in the entry and egress from the host cell of mainly α- and γ-herpesviruses, whereas β-herpesviruses are the least studied in this regard. Here, we studied the role of RhoB GTPase during HCMV lytic infection. Microscopy analysis, both in fixed and live infected cells showed that RhoB was translocated to the assembly complex/compartment (AC) of HCMV, a cytoplasmic zone in infected cells where many viral structural proteins are known to accumulate and assembly of new virions takes place. Furthermore, RhoB was localized at the AC even when the expression of the late HCMV AC proteins was inhibited. At the very late stages of infection, cellular projections were formed containing RhoB and HCMV virions, potentially contributing to the successful viral spread. Interestingly, the knockdown of RhoB in HCMV-infected cells resulted in a significant reduction of the virus titer and could also affect the accumulation of AC viral proteins at this subcellular compartment. RhoB knockdown also affected actin fibers'' structure. Actin reorganization was observed at late stages of infection originating from the viral AC and surrounding the cellular projections, implying a potential interplay between RhoB and actin during HCMV assembly and egress. In conclusion, our results demonstrate for the first time that RhoB is a constituent of the viral AC and is required for HCMV productive infection.  相似文献   

2.
γ-herpesviruses (γHVs) have developed an interaction with their hosts wherein they establish a life-long persistent infection and are associated with the onset of various malignancies. One critical virulence factor involved in the persistency of murine γ-herpesvirus 68 (γHV68) is the viral homolog of the Bcl-2 protein (vBcl-2), which has been implicated to counteract both host apoptotic responses and autophagy pathway. However, the relative significance of the two activities of vBcl-2 in viral persistent infection has yet to be elucidated. Here, by characterizing a series of loss-of-function mutants of vBcl-2, we have distinguished the vBcl-2-mediated antagonism of autophagy from the vBcl-2-mediated inhibition of apoptosis in vitro and in vivo. A mutant γHV68 virus lacking the anti-autophagic activity of vBcl-2 demonstrates an impaired ability to maintain chronic infections in mice, whereas a mutant virus lacking the anti-apoptotic activity of vBcl-2 establishes chronic infections as efficiently as the wild-type virus but displays a compromised ability for ex vivo reactivation. Thus, the vBcl-2-mediated antagonism of host autophagy constitutes a novel mechanism by which γHVs confer persistent infections, further underscoring the importance of autophagy as a critical host determinant in the in vivo latency of γ-herpesviruses.  相似文献   

3.
4.
【目的】分析猪伪狂犬病毒Fa株(PRV-Fa)侵染对猪肾传代细胞PK-15 microRNAs(miRNAs)表达谱的影响。【方法】利用Illumina高通量测序技术,鉴定感染和非感染PRV-Fa的PK-15细胞的miRNAs;筛选并利用实时荧光定量RT-PCR(RT-q PCR)验证差异表达miRNAs;对差异miRNAs进行靶基因预测和Gene ontology(GO)分析。【结果】在感染和未感染PK-15细胞中分别检测到384个和405个miRNAs,其中感染PRV-Fa后差异表达的miRNAs共127个(60个上调,67个下调)。荧光定量结果显示差异miRNAs的表达趋势与高通量测序结果一致。GO分析显示,miRNAs广泛参与信号传导、细胞代谢、免疫反应、基因表达等生物学进程,其中miR-10b、miR-16、miR-18a、miR-19b、miR-20a、miR-145-5p、miR-146a、miR-181a、miR-499-5p等miRNAs与免疫相关。在靶基因调控网络图中,ssc-miR-30a-5p与ssc-miR-30d处于关键位置。研究鉴定出5个新的病毒编码miRNAs,其中PRV-miR-LLT2与PRV-miR-LLT4靶向PRV早期蛋白基因EPO。【结论】伪狂犬病毒Fa株感染对PK-15细胞编码miRNAs有显著影响。  相似文献   

5.
Transmissible gastroenteritis virus (TGEV; Coronaviridae family) causes huge economic losses to the swine industry. MicroRNAs (miRNAs) play a regulatory role in viral infection and may be involved in the mammalian immune response. Here, we report a comprehensive analysis of host miRNA expression in TGEV-infected swine testis (ST) cells. Deep sequencing generated 3,704,353 and 2,763,665 reads from uninfected ST cells and infected ST cells, respectively. The reads were aligned to known Sus scrofa pre-miRNAs in miRBase 19, identifying 284 annotated miRNAs. Certain miRNAs were differentially regulated during TGEV infection. 59 unique miRNAs displayed significant differentially expression between the normal and TGEV-infected ST cell samples: 15 miRNAs were significantly up-regulated and 44 were significantly down-regulated. Stem-loop RT-PCR was carried out to determine the expression levels of specific miRNAs in the two samples, and the results were consistent with those of sequencing. Gene ontology enrichment analysis of host target genes demonstrated that the differentially expressed miRNAs are involved in regulatory networks, including cellular process, metabolic process, immune system process. This is the first report of the identification of ST cell miRNAs and the comprehensive analysis of the miRNA regulatory mechanism during TGEV infection, which revealed the miRNA molecular regulatory mechanisms for the viral infection, expression of viral genes and the expression of immune-related genes. The results presented here will aid research on the prevention and treatment of viral diseases.  相似文献   

6.
7.
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an ‘assisted evolution’ approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection.  相似文献   

8.
Host colonization by lymphotropic γ-herpesviruses depends critically on expansion of viral genomes in germinal center (GC) B-cells. Myc is essential for the formation and maintenance of GCs. Yet, the role of Myc in the pathogenesis of γ-herpesviruses is still largely unknown. In this study, Myc was shown to be essential for the lymphotropic γ-herpesvirus MuHV-4 biology as infected cells exhibited increased expression of Myc signature genes and the virus was unable to expand in Myc defficient GC B-cells. We describe a novel strategy of a viral protein activating Myc through increased protein stability resulting in increased progression through the cell cycle. This is acomplished by modulating a physiological post-translational regulatory pathway of Myc. The molecular mechanism involves Myc heterotypic poly-ubiquitination mediated via the viral E3 ubiquitin-ligase mLANA protein. EC5SmLANA modulates cellular control of Myc turnover by antagonizing SCFFbw7 mediated proteasomal degradation of Myc, mimicking SCFβ-TrCP. The findings here reported reveal that modulation of Myc is essential for γ-herpesvirus persistent infection, establishing a link between virus induced lymphoproliferation and disease.  相似文献   

9.
Exposure of endothelial cells (ECs) to agents such as oxidized glycerophospholipids (oxGPs) and cytokines, known to accumulate in atherosclerotic lesions, perturbs the expression of hundreds of genes in ECs involved in inflammatory and other biological processes. We hypothesized that microRNAs (miRNAs) are involved in regulating the inflammatory response in human aortic endothelial cells (HAECs) in response to oxGPs and interleukin 1β (IL-1β). Using next-generation sequencing and RT-quantitative PCR, we characterized the profile of expressed miRNAs in HAECs pre- and postexposure to oxGPs. Using this data, we identified miR-21-3p and miR-27a-5p to be induced 3- to 4-fold in response to oxGP and IL-1β treatment compared with control treatment. Transient overexpression of miR-21-3p and miR-27a-5p resulted in the downregulation of 1,253 genes with 922 genes overlapping between the two miRNAs. Gene Ontology functional enrichment analysis predicted that the two miRNAs were involved in the regulation of nuclear factor κB (NF-κB) signaling. Overexpression of these two miRNAs leads to changes in p65 nuclear translocation. Using 3′ untranslated region luciferase assay, we identified 20 genes within the NF-κB signaling cascade as putative targets of miRs-21-3p and -27a-5p, implicating these two miRNAs as modulators of NF-κB signaling in ECs.  相似文献   

10.
11.
It is widely held that any given virus uses only one type of nucleic acid for genetic information storage. However, this consensus has been challenged slightly by several recent studies showing that many RNA species are present within a range of DNA viruses that include Kaposi''s sarcoma-associated herpesvirus (KSHV). RNAs extracted from purified DNA virus particles exhibit great diversity in terms of length, abundance, temporal expression, cellular localization, and coding capacity during viral infection. In addition to known RNA species, the current study showed that small regulatory RNAs were present in KSHV virions. A large number of viral and cellular microRNAs (miRNAs), as well as unusual small RNAs (usRNAs), were detected in KSHV virions by using deep sequencing. Both viral and host miRNAs detected in small RNAs extracted from KSHV virions were further shown to colocalize with KSHV virions directly by in situ hybridization (ISH)-electron microscopy (EM) (ISH-EM). Some of these miRNAs were differentially present in the host cells and KSHV virions, suggesting that they are not randomly present in KSHV virions. The virional miRNAs could be transported into host cells, and they are biologically functional during de novo viral infection. Our study revealed miRNAs and usRNAs as a novel group of components in KSHV virions.  相似文献   

12.
13.
14.
The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking.  相似文献   

15.

Background

Interferon-α (IFN-α) treatment suppresses HIV-1 viremia and reduces the size of the HIV-1 latent reservoir. Therefore, investigation of the molecular and immunologic effects of IFN-α may provide insights that contribute to the development of novel prophylactic, therapeutic and curative strategies for HIV-1 infection. In this study, we hypothesized that microRNAs (miRNAs) contribute to the IFN-α-mediated suppression of HIV-1. To inform the development of novel miRNA-based antiretroviral strategies, we investigated the effects of exogenous IFN-α treatment on global miRNA expression profile, HIV-1 viremia, and potential regulatory networks between miRNAs and cell-intrinsic anti-HIV-1 host factors in vivo.

Methods

Global miRNA expression was examined in longitudinal PBMC samples obtained from seven HIV/HCV-coinfected, antiretroviral therapy-naïve individuals before, during, and after pegylated interferon-α/ribavirin therapy (IFN-α/RBV). We implemented novel hybrid computational-empirical approaches to characterize regulatory networks between miRNAs and anti-HIV-1 host restriction factors.

Results

miR-422a was the only miRNA significantly modulated by IFN-α/RBV in vivo (p<0.0001, paired t test; FDR<0.037). Our interactome mapping revealed extensive regulatory involvement of miR-422a in p53-dependent apoptotic and pyroptotic pathways. Based on sequence homology and inverse expression relationships, 29 unique miRNAs may regulate anti-HIV-1 restriction factor expression in vivo.

Conclusions

The specific reduction of miR-422a is associated with exogenous IFN-α treatment, and likely contributes to the IFN-α suppression of HIV-1 through the enhancement of anti-HIV-1 restriction factor expression and regulation of genes involved in programmed cell death. Moreover, our regulatory network analysis presents additional candidate miRNAs that may be targeted to enhance anti-HIV-1 restriction factor expression in vivo.  相似文献   

16.

Purpose

To determine whether HIV-1 produces microRNAs and elucidate whether these miRNAs can induce inflammatory response in macrophages (independent of the conventional miRNA function in RNA interference) leading to chronic immune activation.

Methods

Using sensitive quantitative Real Time RT-PCR and sequencing, we detected novel HIV-derived miRNAs in the sera of HIV+ persons, and associated with exosomes. Release of TNFα by macrophages challenged with HIV miRNAs was measured by ELISA.

Results

HIV infection of primary alveolar macrophages produced elevated levels of viral microRNAs vmiR88, vmiR99 and vmiR-TAR in cell extracts and in exosome preparations from conditioned medium. Furthermore, these miRNAs were also detected in exosome fraction of sera from HIV-infected persons. Importantly, vmiR88 and vmiR99 (but not vmiR-TAR) stimulated human macrophage TNFα release, which is dependent on macrophage TLR8 expression. These data support a potential role for HIV-derived vmiRNAs released from infected macrophages as contributing to chronic immune activation in HIV-infected persons, and may represent a novel therapeutic target to limit AIDS pathogenesis.

Conclusion

Novel HIV vmiR88 and vmiR99 are present in the systemic circulation of HIV+ persons and could exhibit biological function (independent of gene silencing) as ligands for TLR8 signaling that promote macrophage TNFα release, and may contribute to chronic immune activation. Targeting novel HIV-derived miRNAs may represent a therapeutic strategy to limit chronic immune activation and AIDS progression.  相似文献   

17.
A time-course pathogenesis study was performed to compare and contrast primary foot-and-mouth disease virus (FMDV) infection following simulated-natural (intra-nasopharyngeal) virus exposure of cattle that were non-vaccinated or vaccinated using a recombinant adenovirus-vectored FMDV vaccine. FMDV genome and infectious virus were detected during the initial phase of infection in both categories of animals with consistent predilection for the nasopharyngeal mucosa. A rapid progression of infection with viremia and widespread dissemination of virus occurred in non-vaccinated animals whilst vaccinated cattle were protected from viremia and clinical FMD. Analysis of micro-anatomic distribution of virus during early infection by lasercapture microdissection localized FMDV RNA to follicle-associated epithelium of the nasopharyngeal mucosa in both groups of animals, with concurrent detection of viral genome in nasopharyngeal MALT follicles in vaccinated cattle only. FMDV structural and non-structural proteins were detected in epithelial cells of the nasopharyngeal mucosa by immunomicroscopy 24 hours after inoculation in both non-vaccinated and vaccinated steers. Co-localization of CD11c+/MHC II+ cells with viral protein occurred early at primary infection sites in vaccinated steers while similar host-virus interactions were observed at later time points in non-vaccinated steers. Additionally, numerous CD8+/CD3- host cells, representing presumptive natural killer cells, were observed in association with foci of primary FMDV infection in the nasopharyngeal mucosa of vaccinated steers but were absent in non-vaccinated steers. Immunomicroscopic evidence of an activated antiviral response at primary infection sites of vaccinated cattle was corroborated by a relative induction of interferon -α, -β, -γ and -λ mRNA in micro-dissected samples of nasopharyngeal mucosa. Although vaccination protected cattle from viremia and clinical FMD, there was subclinical infection of epithelial cells of the nasopharyngeal mucosa that could enable shedding and long-term persistence of infectious virus. Additionally, these data indicate different mechanisms within the immediate host response to infection between non-vaccinated and vaccinated cattle.  相似文献   

18.
19.
KSHV is a DNA tumor virus that causes Kaposi’s sarcoma. Upon KSHV infection, only a limited number of latent genes are expressed. We know that KSHV infection regulates host gene expression, and hypothesized that latent genes also modulate the expression of host miRNAs. Aberrant miRNA expression contributes to the development of many types of cancer. Array-based miRNA profiling revealed that all six miRNAs of the oncogenic miR-17-92 cluster are up-regulated in KSHV infected endothelial cells. Among candidate KSHV latent genes, we found that vFLIP and vCyclin were shown to activate the miR-17-92 promoter, using luciferase assay and western blot analysis. The miR-17-92 cluster was previously shown to target TGF-β signaling. We demonstrate that vFLIP and vCyclin induce the expression of the miR-17-92 cluster to strongly inhibit the TGF-β signaling pathway by down-regulating SMAD2. Moreover, TGF-β activity and SMAD2 expression were fully restored when antagomirs (inhibitors) of miR-17-92 cluster were transfected into cells expressing either vFLIP or vCyclin. In addition, we utilized viral genetics to produce vFLIP or vCyclin knock-out viruses, and studied the effects in infected TIVE cells. Infection with wildtype KSHV abolished expression of SMAD2 protein in these endothelial cells. While single-knockout mutants still showed a marked reduction in SMAD2 expression, TIVE cells infected by a double-knockout mutant virus were fully restored for SMAD2 expression, compared to non-infected TIVE cells. Expression of either vFLIP or vCycIin was sufficient to downregulate SMAD2. In summary, our data demonstrate that vFLIP and vCyclin induce the oncogenic miR-17-92 cluster in endothelial cells and thereby interfere with the TGF-β signaling pathway. Manipulation of the TGF-β pathway via host miRNAs represents a novel mechanism that may be important for KSHV tumorigenesis and angiogenesis, a hallmark of KS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号