首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》1986,850(1):49-56
Mitochondria isolated from corn (Zea mays L.) coleoptiles by an improved procedure which yields functionally intact preparations are much more active in respiration-coupled Ca2+ accumulation than those employed in most earlier studies. Ca2+ uptake by these mitochondria is phosphate-dependent and is accompanied by decrease in Δψ, H+ extrusion and increase in the rate of respiration. A sigmoidal plot with a Hill coefficient of 2.22 was obtained when the rates of Ca2+ uptake were plotted as a function of free Ca2+ concentration. The K0.5 for Ca2+ influx was about 31 μM and a Vmax of 140 nmol Ca2+ per min per mg was attained at a free-Ca2+ concentration of about 120 μM. Ca2+ uptake is sensitive to inhibition by ruthenium red and Mg2+. The external free-Ca2+ concentration maintained at steady state was about 2 μM and was independent of the respiratory substrate and of external Na+, but was increased by exogenous Mg2+. In addition, this preparation of corn mitochondria has shown a much higher ability for Ca2+ retention in the presence of phosphate and NAD(P)H oxidants than liver mitochondria.  相似文献   

2.
3.
The seleno-organic compound ebselen mimics the glutathione-dependent, hydroperoxide reducing activity of glutathione peroxidase. The activity of glutathione peroxidase determines the rate of hydroperoxide-induced Ca2+ release from mitochondria. Ebselen stimulates Ca2+ release from mitochondria, accelerates mitochondrial respiration and uncoupling, and induces mitochondrial swelling, indicating a deterioration of mitochondrial function. These manifestations are abolished by cyclosporine A, a potent inhibitor of the mitochondrial permeability transition. However, when ebselen-induced Ca2+ cycling is prevented with ruthenium red, an inhibitor of the Ca2+ uniporter, or by chelation of extramitochondrial Ca2+ by EGTA, no detectable elevation of swelling or uncoupling is observed. The release of Ca2+ from mitochondria is delayed in the absence of rotenone, i.e. when pyridine nucleotides are maintained in the reduced state due to succinate-driven reversed electron flow. We suggest that ebselen induces Ca2+ release from intact mitochondria via an NAD+ hydrolysis-dependent mechanism.  相似文献   

4.
Coupled mitochondria isolated from the white leaves of cabbage (Brassica Oleracea, var. capitata) were inactive in respiration-coupled Ca2+ accumulation, in contrast to mitochondria isolated from etiolated corn (Zea mays) which showed the ability to take up Ca2+ from the medium, although with a much lower activity than liver mitochondria. The addition of corn mitochondria to aerobic medium containing succinate as respiratory substrate and a free Ca2+ concentration of 40 microM resulted in Ca2+ uptake with a decrease in free Ca2+ concentration until a steady state of about 2.0 microM was reached and maintained constant for several minutes. Perturbation of this steady state by the addition of Ca2+ or EGTA was followed by Ca2+ uptake or release, respectively, until the steady state was attained at the original extramitochondrial free Ca2+ concentration. These results indicate that corn but not cabbage mitochondria, as with some animal mitochondria, have the ability to buffer external Ca2+ and may be involved in the maintenance of Ca2+ homeostasis in the cell.  相似文献   

5.
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential.  相似文献   

6.
Rat liver mitochondria may be subfractionated in sediment and supernatant fractions by swelling in the presence of EDTA and oxaloacetate. The sediment is largely depleted of the Ca2+-binding glycoprotein and its Ca2+-transporting activity may be as low as 10--20% of the starting value. Both the rate of Ca2+ uptake and the capacity to maintain a high Ca2+ concentration gradient across the membrane are depressed. Addition of an osmotic supernatant to the assay mixture may partially restore the original Ca2+-transporting ability. The active component in the supernatant is the Ca2+-binding glycoprotein. This is shown by the following facts: (a) the effect is enhanced by the addition of the purified glycoprotein to the supernatant; (b) precipitation of the glycoprotein from the supernatant by affinity chromatography-purified antibodies abolishes the stimulatory effect, and (c) in the presence of 130 microM Mg2+, the glycoprotein alone may restore fully the Ca2+-transporting ability of the particles. The maximal velocity is already reached at 0.1 microgram glycoprotein/mg mitochondrial protein.  相似文献   

7.
Ethanol stimulates the Na(+)-dependent Ca2+ efflux in brain mitochondria and inhibits the Na(+)-independent Ca(2+)-efflux. Here, we studied the effects of n-alkanols on the various Ca2+ transport processes in brain mitochondria. Only short-chain alcohols (i.e. methanol, ethanol and propanol) stimulated Na+/Ca2+ exchange. The inhibition of H+/Ca2+ exchange was significant only with ethanol. Short-chain alcohols inhibit while long-chain alcohols activate the cyclosporin-sensitive Ca(2+)-efflux. These data suggest that the mechanism of the alkanols' effects on Na+/Ca2+ exchange, H+/Ca2+ exchange and the cyclosporin sensitive pore are entirely different. Alkanols have no effect on the electrogenic Ca2+ uniporter. Ethanol did not affect the apparent K0.5 for Na+ (7.5 mM) of the Na+/Ca2+ exchange. Similarly, the magnitude of the effect of ethanol did not depend on matrix Ca2+ concentration, suggesting that short-chain alkanols do not stimulate the rate of Na+/Ca2+ exchange by increasing the affinity of the carrier to Ca2+in or Na+out. High concentrations of K+, Mg2+ and Ca2+ enhanced the ethanol effect. It is possible that high surface potential attenuates the effect of ethanol. It is suggested that ethanol stimulation of Na+/Ca2+ exchange depends on the modulation of the surface dielectric constant.  相似文献   

8.
Na+, pH, prostaglandin F2 alpha are studied for their effect on Ca2+ transport into fractions of cow's myometrium mitochondria. Na+ does not affect a passive release of Ca2+ from mitochondria and its energy-dependent accumulation. A decrease of the incubation medium pH from 7.5 to 6.5 stimulates Ca2+ release from mitochondria and inhibits its energy-dependent pumping into them. Prostaglandin F2 alpha (10(-8)--2 X 10(-4) M) does not affect the activity of Ca2+ accumulation and release systems. A conclusion is made that the Na+-Ca2+-exchange system is absent in mitochondria of smooth muscle cells and Ca2+ release proceeds as a result of H+-Ca2+-antiport system functioning.  相似文献   

9.
Ca 2+ transport activity in mitochondria from some plant tissues   总被引:8,自引:0,他引:8  
Mitochondria isolated from some 14 different higher plants and fungi were examined for their capacity to carry out respiration-dependent accumulation of Ca2+. Additions of Ca2+ give little or no stimulation of state 4 respiration of plant mitochondria, although the added Ca2+ was largely accumulated. Accumulation of Ca2+ required phosphate and, in most cases, was stimulated by Mg2+ and ADP or ATP. Ca2+ uptake was abolished by respiratory inhibitors and uncoupling agents. The ratio of Ca2+ ions taken up per pair of electrons per energy-conserving site was normal at about 2.0 for mitochondria from sweet potato and white potato; mitochondria from other plants showed somewhat lower ratios. Accumulated Ca2+ was only very slowly released from previously loaded plant mitochondria. Respiration-inhibited sweet potato mitochondria show both high-affinity and low-affinity Ca2+ binding sites sensitive to uncouplers, La3+, and ruthenium red and thus resemble animal mitochondria. Most other plant mitochondria lack high affinity sites. In general, mitochondria from sweet potato and white potato tubers resemble those from animal tissues, but mitochondria from carrots, beets, turnips, onions, cabbage, artichokes, cauliflower, avocados, mung bean and corn seedlings, and mushrooms show rather low affinity and activity in accumulation of Ca2+, probably due to lack of a specific Ca2+ carrier.  相似文献   

10.
Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ   总被引:1,自引:0,他引:1  
The use of digitonin to permeabilize Trypanosoma cruzi plasma membrane enabled us to study Ca2+ transport and oxidative phosphorylation in mitochondria in situ. Addition of Ca2+ to these preparations evoked a cycle of respiratory stimulation. Ca2+ uptake was partially inhibited by ruthenium red, almost totally inhibited by antimycin A, and stimulated by inorganic phosphate. Addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone to digitonin-permeabilized T. cruzi epimastigotes under steady-state conditions was followed by Ca2+ release. Antimycin A- and carbonyl cyanide p-trifluoromethoxyphenylhydrazonein-sensitive Ca2+ uptake was also detected in digitonin-permeabilized epimastigotes. Accordingly, ATP stimulated Ca2+ uptake by preparations de-energized by oligomycin and antimycin A. In conclusion, in contrast to previous reports indicating that a Ca2+ transport system occurs only in mitochondria from vertebrate tissues, T. cruzi epimastigotes also possess a similar system. In addition, these protozoan mitochondria have an extremely high resistance to the deleterious effects of massive Ca2+ loads in comparison with most types of mammalian mitochondria.  相似文献   

11.
We have expressed aequorin in mitochondria of the yeast Saccharomyces cerevisiae and characterized the resulting strain with respect to mitochondrial Ca(2+) transport in vivo and in vitro. When intact cells are suspended in water containing 1.4 mM ethanol and 14 mM CaCl(2), the matrix free Ca(2+) concentration is 200 nM, similar to the values expected in cytoplasm. Addition of ionophore ETH 129 allows an active accumulation of Ca(2+) and promptly increases the value to 1.2 microM. Elevated Ca(2+) concentrations are maintained for periods of 6 min or longer under these conditions. Isolated yeast mitochondria oxidizing ethanol also accumulate Ca(2+) when ETH 129 is present, but the cation is not retained depending on the medium conditions. This finding confirms the presence of a Ca(2+) release mechanism that requires free fatty acids as previously described [P.C. Bradshaw et al. (2001) J. Biol. Chem. 276, 40502-40509]. When a respiratory substrate is not present, Ca(2+) enters and leaves yeast mitochondria slowly, at a specific activity near 0.2 nmol/min/mg protein. Transport under these conditions equilibrates the internal and external concentrations of Ca(2+) and is not affected by ruthenium red, uncouplers, or ionophores that perturb transmembrane gradients of charge and pH. This activity displays sigmoid kinetics and a K(1/2) value for Ca(2+) that is near to 900 nM, in the absence of ethanol or when it is present. It is furthermore shown that the activity coefficient of Ca(2+) in yeast mitochondria is a function of the matrix Ca(2+) content and is substantially larger than that in mammalian mitochondria. Characteristics of the aequorin-expressing strain appear suitable for its use in expression-based methods directed at cloning Ca(2+) transporters from mammalian mitochondria and for further examining the interrelationships between mitochondrial and cytoplasmic Ca(2+) in yeast.  相似文献   

12.
The effect of spermine (50-400 microM) on the Ca-transporting system of brain mitochondria was studied. In a medium containing Mg2+ and ATP, spermine facilitates the accumulation of Ca2+ by decreasing Km of the uniporter. Spermine inhibits Na-stimulated Ca2+ efflux; this effect is dependent on the ionic strength of the medium--it is decreased when KCl concentration is increased from 20 to 120 mM. Spermine (200 microM) decreases (by 50%) the steady state concentration of Ca2+ maintained by mitochondria. The importance of spermine as a regulator of Ca2+-transport in brain mitochondria is discussed.  相似文献   

13.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

14.
The use of digitonin to permeabilize Trypanosoma cruzi plasma membrane has allowed the study of Ca2+ transport and oxidative phosphorylation in mitochondria in situ (R. Docampo and A. E. Vercesi (1989) J. Biol. Chem. 264, 108-111). The present results show that these mitochondria are able to build up and retain a membrane potential as indicated by a tetraphenylphosphonium-sensitive electrode. Ca2+ uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca2+ transport mechanism in these mitochondria. Addition of Ca2+ or ethylene glycol bis (beta-aminoethyl ether) N-N'-tetraacetic acid to these preparations under steady-state conditions was followed by Ca2+ uptake or release, respectively, tending to restore the original Ca2+ "set point" at about 0.9 microM. In addition, large amounts of Ca2+ were retained by T. cruzi mitochondria even after addition of thiols and NAD(P)H oxidants such as t-butyl hydroperoxide, diamide, and the 1,2-naphthoquinone beta-lapachone. However, when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine in the presence of antimycin A was used as subtrate, beta-lapachone caused pyridine nucleotide oxidation, and Ca2+ accumulation by these mitochondria was considerably lower than in control preparations, this effect being dose-dependent.  相似文献   

15.
The transport of Ca2+ in islet and kidney mitochondria respiring on succinate was inhibited by atractylate and fluorocitrate, and stimulated by pyruvate, isocitrate, alpha-ketoglutarate, dibutyryl cAMP, oligomycin and bongkrekate, and by in vivo administration of glucagon, glyceraldehyde or glucose. The kidney [beta-hydroxybutyrate]/[acetoacetate] ratio was increased in glyceraldehyde treated mice. The data suggest a relationship, which might be influenced by cAMP, between activity of pyruvate, isocitrate and alpha-ketoglutarate dehydrogenases and transport of Ca2+ in islet and kidney mitochondria. A contributory role of reductive carboxylation for Ca2+ uptake, and a role of citrate for Ca2+ retention are discussed.  相似文献   

16.
The herbicides amiprophosmethyl (APM) trifluralin, and oryzalin as well as the fungicides methylbenzimidazolyl carbamate (MBC), O-isopropyl N-phenyl carbamate (IPC), and chlorisopropyl N-phenyl carbamate (CIPC), which are known to cause the destruction of microtubules in vivo but do not interfere with tubulin polymerization in vitro, have been examined with respect to their ability to affect Ca2+ transport in isolated cell organelles. In contrast to colchicine which has no effect on Ca2+ transport in isolated mitochondrial and microsomal fractions, all of the substances investigated caused considerable reduction of ca2+ net uptake into mitochondrial but not into microsomal fractions. This reduction has been shown to be due to an increase in passive Ca2+ efflux. These results have been extrapolated to in vivo situations where they are postulated to act by raising cytoplasmic Ca2+ levels.Abbreviations APM amiprophosmethyl - CIPC chlorisopropyl N-phenyl carbamate - IPC O-isopropyl N-phenyl carbamate - MBC methylbenzimidazolyl carbamate - Mops 3-(N-Morpholino) propanesulfonic acid - DMSO dimethylsulfoxide  相似文献   

17.
Tetracycline was used as a fluorescent test-antibiotic for Ca2+ ions in rat liver mitochondria. Incubation of the isolated mitochondria under anaerobic conditions at 20 degrees C resulted in a rapid (in 30-min) loss by the mitochondria of the property to accumulate Ca2+. Disturbances of the mitochondrial Ca2+-accumulating property during the survival of the liver developed much more slowly (it took over 2 hours) and were not monotonous; the maximal values were recorded during the 5th-10th and the 60th minutes of survival.  相似文献   

18.
Summary In a study of the Ca2+ kinetics of mitochondria of chick epiphyseal chondrocytes, the rate of Ca2+ uptake was linear up to a medium Ca2+ concentration of 30 m. The half maximal transport rate occurred at 34 m Ca2+. The Ca2+ uptake rate, expressed as a function of time, was 35 nmoles/mg protein/min; the presence of Mg2+ had little effect on Ca2+ accumulation. While these kinetic parameters did not differ significantly from mitochondria of cells of nonmineralizing tissues, the respiratory characteristics of the chondrocyte organelles exhibited functional differences. Thus, up to 350 nmoles Ca2+/mg protein, chondrocyte mitochondria performed coupled oxidative phosphorylation. Calcium uptake was energy supported, while Ca2+ binding was low. Addition of respiratory inhibitors and uncouplers to these mitochondria resulted in a rapid loss of more than 80% of the total Ca2+. The Ca/Pi ratio of the extrudate was very similar to the ratio of these ions in cartilage septum fluid. In the most mineralized zones of the epiphyseal plate, there was little change in the state 4 respiratory rate, but nonspecific Ca2+ binding was elevated and a high percentage of the total Ca2+ was in a nonextrudable form. The results indicate that in cells preparing for mineralization, much of the total mitochondrial Ca2+ is in a form that can be transported to the calcification front. In cells close to the calcification front, nonextrudable Ca2+ may form calcium phosphate granules described by other investigators.  相似文献   

19.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

20.
The in vitro effects of iron (III)-gluconate complex on the production of malondialdehyde and on the Ca2+ transport in isolated rat liver mitochondria were studied. A correlation between the concentration of iron added and the formation of malondialdehyde was found. The enhancement by iron of lipid peroxidative process in the mitochondrial membrane brought about the induction of Ca2+ release from mitochondria. Experimental evidence based on the membrane potential pattern of mitochondria pre-loaded with a low pulse of Ca2+ suggested that Ca2+ efflux was not due to a nonspecific increase in the inner membrane permeability, i.e. to a collapse of membrane potential, but rather to the activation of an apparently selective pathway for Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号