首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated L-type Ca2+ channels (LTCCs) containing a pore-forming alpha1D subunit (D-LTCCs) are expressed in neurons and neuroendocrine cells. Their relative contribution to total L-type Ca2+ currents and their physiological role and significance as a drug target remain unknown. Therefore, we generated D-LTCC deficient mice (alpha1D-/-) that were viable with no major disturbances of glucose metabolism. alpha1D-/-mice were deaf due to the complete absence of L-type currents in cochlear inner hair cells and degeneration of outer and inner hair cells. In wild-type controls, D-LTCC-mediated currents showed low activation thresholds and slow inactivation kinetics. Electrocardiogram recordings revealed sinoatrial node dysfunction (bradycardia and arrhythmia) in alpha1D-/- mice. We conclude that alpha1D can form LTCCs with negative activation thresholds essential for normal auditory function and control of cardiac pacemaker activity.  相似文献   

2.
The dihydropyridine (DHP)-binding site has been identified within L-type Ca(2+) channel alpha(1C) subunit. However, the molecular mechanism underlying modulation of Ca(2+) channel gating by DHPs has not been clarified. To search for novel determinants of high affinity DHP binding, we introduced point mutations in the rat brain Ca(2+) channel alpha(1C) subunit (rbCII or Ca(v)1.2c) based on the comparison of amino acid sequences between rbCII and the ascidian L-type Ca(2+) channel alpha(1) subunit, which is insensitive to DHPs. The alpha(1C) mutants (S1115A, S1146A, and A1420S) and rbCII were transiently expressed in BHK6 cells with beta(1a) and alpha(2)/delta subunits. The mutation did not affect the electrophysiological properties of the Ca(2+) channel, or the voltage- and concentration-dependent block of Ca(2+) channel currents produced by diltiazem and verapamil. However, the S1115A channel was significantly less sensitive to DHP antagonists. Interestingly, in the S1115A channel, DHP agonists failed to enhance whole-cell Ca(2+) channel currents and the prolongation of mean open time, as well as the increment of NP(o). Responsiveness to the non-DHP agonist FPL-64176 was also markedly reduced in the S1115A channel. When S1115 was replaced by other amino acids (S1115D, S1115T, or S1115V), only S1115T was slightly sensitive to S-(-)-Bay K 8644. These results indicate that the hydroxyl group of Ser(1115) in IIIS5-S6 linker of the L-type Ca(2+) channel alpha(1C) subunit plays a critical role in DHP binding and in the action of DHP Ca(2+) channel agonists.  相似文献   

3.
Voltage-dependent L-type Ca(2+) (Ca(V)1.2) channels are the principal Ca(2+) entry pathway in arterial myocytes. Ca(V)1.2 channels regulate multiple vascular functions and are implicated in the pathogenesis of human disease, including hypertension. However, the molecular identity of Ca(V)1.2 channels expressed in myocytes of myogenic arteries that regulate vascular pressure and blood flow is unknown. Here, we cloned Ca(V)1.2 subunits from resistance size cerebral arteries and demonstrate that myocytes contain a novel, cysteine rich N terminus that is derived from exon 1 (termed "exon 1c"), which is located within CACNA1C, the Ca(V)1.2 gene. Quantitative PCR revealed that exon 1c was predominant in arterial myocytes, but rare in cardiac myocytes, where exon 1a prevailed. When co-expressed with alpha(2)delta subunits, Ca(V)1.2 channels containing the novel exon 1c-derived N terminus exhibited: 1) smaller whole cell current density, 2) more negative voltages of half activation (V(1/2,act)) and half-inactivation (V(1/2,inact)), and 3) reduced plasma membrane insertion, when compared with channels containing exon 1b. beta(1b) and beta(2a) subunits caused negative shifts in the V(1/2,act) and V(1/2,inact) of exon 1b-containing Ca(V)1.2alpha(1)/alpha(2)delta currents that were larger than those in exon 1c-containing Ca(V)1.2alpha(1)/alpha(2)delta currents. In contrast, beta(3) similarly shifted V(1/2,act) and V(1/2,inact) of currents generated by exon 1b- and exon 1c-containing channels. beta subunits isoform-dependent differences in current inactivation rates were also detected between N-terminal variants. Data indicate that through novel alternative splicing at exon 1, the Ca(V)1.2 N terminus modifies regulation by auxiliary subunits. The novel exon 1c should generate distinct voltage-dependent Ca(2+) entry in arterial myocytes, resulting in tissue-specific Ca(2+) signaling.  相似文献   

4.
5.
P Lory  G Varadi    A Schwartz 《Biophysical journal》1992,63(5):1421-1424
The skeletal muscle (SKM) L-type Ca2+ channel is composed of a central subunit designated alpha 1, which contains the pore and the dihydropyridine (DHP) binding domains and three associated subunits, alpha 2/delta, beta, and gamma, which influence the activity of the SKM alpha 1. Coexpression of SKM alpha 1 and SKM beta in stably transfected mouse L cells results in a dramatic increase in DHP binding accompanied by fast gated Ba2+ currents. We report here that this "SKM alpha 1 beta-related phenotype" can be converted upon intracellular trypsin treatment into a slowly inactivating, DHP sensitive "SKM alpha 1 phenotype." These observations indicate that current amplitude, fast inactivation, and DHP sensitivity are modulated by an interaction of SKM alpha 1 and SKM beta on the internal side of the membrane.  相似文献   

6.
FPL 64176 (FPL) is a nondihydropyridine compound that dramatically increases macroscopic inward current through L-type calcium channels and slows activation and deactivation. To understand the mechanism by which channel behavior is altered, we compared the effects of the drug on the kinetics and voltage dependence of ionic currents and gating currents. Currents from a homogeneous population of channels were obtained using cloned rabbit Ca(V)1.2 (alpha1C, cardiac L-type) channels stably expressed in baby hamster kidney cells together with beta1a and alpha2delta1 subunits. We found a striking dissociation between effects of FPL on ionic currents, which were modified strongly, and on gating currents, which were not detectably altered. Inward ionic currents were enhanced approximately 5-fold for a voltage step from -90 mV to +10 mV. Kinetics of activation and deactivation were slowed dramatically at most voltages. Curiously, however, at very hyperpolarized voltages (< -250 mV), deactivation was actually faster in FPL than in control. Gating currents were measured using a variety of inorganic ions to block ionic current and also without blockers, by recording gating current at the reversal potential for ionic current (+50 mV). Despite the slowed kinetics of ionic currents, FPL had no discernible effect on the fundamental movements of gating charge that drive channel gating. Instead, FPL somehow affects the coupling of charge movement to opening and closing of the pore. An intriguing possibility is that the drug causes an inactivated state to become conducting without otherwise affecting gating transitions.  相似文献   

7.
Native smooth muscle L-type Ca(v)1.2 calcium channels have been shown to support a fraction of Ca(2+) currents with a window current that is close to resting potential. The smooth muscle L-type Ca(2+) channels are also more susceptible to inhibition by dihydropyridines (DHPs) than the cardiac channels. It was hypothesized that smooth muscle Ca(v)1.2 channels exhibiting hyperpolarized shift in steady-state inactivation would contribute to larger inhibition by DHP, in addition to structural differences of the channels generated by alternative splicing that modulate DHP sensitivities. In addition, it has also been shown that alternative splicing modulates DHP sensitivities by generating structural differences in the Ca(v)1.2 channels. Here, we report a smooth muscle L-type Ca(v)1.2 calcium channel splice variant, Ca(v)1.2SM (1/8/9(*)/32/Delta33), that when expressed in HEK 293 cells display hyperpolarized shifts for steady-state inactivation and activation potentials when compared with the established Ca(v)1.2b clone (1/8/9(*)/32/33). This variant activates from more negative potentials and generates a window current closer to resting membrane potential. We also identified the predominant cardiac isoform Ca(v)1.2CM clone (1a/8a/Delta9(*)/32/33) that is different from the established Ca(v)1.2a (1a/8a/Delta9(*)/31/33). Importantly, Ca(v)1.2SM channels were shown to be more sensitive to nifedipine blockade than Ca(v)1.2b and cardiac Ca(v)1.2CM channels when currents were recorded in either 5 mM Ba(2+) or 1.8 mM Ca(2+) external solutions. This is the first time that a smooth muscle Ca(v)1.2 splice variant has been identified functionally to possess biophysical property that can be linked to enhanced state-dependent block by DHP.  相似文献   

8.
L-type Ca(2+) channels in native tissues have been found to contain a pore-forming alpha(1) subunit that is often truncated at the C terminus. However, the C terminus contains many important domains that regulate channel function. To test the hypothesis that C-terminal fragments may associate with and regulate C-terminal-truncated alpha(1C) (Ca(V)1.2) subunits, we performed electrophysiological and biochemical experiments. In tsA201 cells expressing either wild type or C-terminal-truncated alpha(1C) subunits in combination with a beta(2a) subunit, truncation of the alpha(1C) subunit by as little as 147 amino acids led to a 10-15-fold increase in currents compared with those obtained from control, full-length alpha(1C) subunits. Dialysis of cells expressing the truncated alpha(1C) subunits with C-terminal fragments applied through the patch pipette reconstituted the inhibition of the channels seen with full-length alpha(1C) subunits. In addition, C-terminal deletion mutants containing a tethered C terminus also exhibited the C-terminal-induced inhibition. Immunoprecipitation assays demonstrated the association of the C-terminal fragments with truncated alpha(1C) subunits. In addition, glutathione S-transferase pull-down assays demonstrated that the C-terminal inhibitory fragment could associate with at least two domains within the C terminus. The results support the hypothesis the C- terminal fragments of the alpha(1C) subunit can associate with C-terminal-truncated alpha(1C) subunits and inhibit the currents through L-type Ca(2+) channels.  相似文献   

9.
10.
The L-type calcium channel (LTCC) CaV1.3 is regarded as a new potential therapeutic target for Parkinson’s disease. Calcium influx through CaV1.3 LTCC during autonomous pacemaking in adult dopaminergic neurons of the substantia nigra pars compacta is related to the generation of mitochondrial oxidative stress in animal models. Development of a CaV1.3 antagonist selective over CaV1.2 is essential because CaV1.2 pore-forming subunits are the predominant form of LTCCs and are abundant in the central nervous and cardiovascular systems. We have explored 1,4-dihydropyrimidines and 4H-pyrans to identify potent and selective antagonists of CaV1.3 relative to CaV1.2 LTCCs. A library of 36 dihydropyridine (DHP)-mimic 1,4-dihydropyrimidines and 4H-pyrans was synthesized, and promising chiral compounds were resolved. The antagonism studies of CaV1.3 and CaV1.2 LTCCs using DHP mimic compounds showed that dihydropyrimidines and 4H-pyrans are effective antagonists of DHPs for CaV1.3 LTCCs. Some 1,4-dihydropyrimidines are more selective than isradipine for CaV1.3 over CaV1.2, shown here by both calcium flux and patch-clamp electrophysiology experiments, where the ratio of antagonism is around 2–3. These results support the hypothesis that the modified hydrogen bonding donor/acceptors in DHP-mimic dihydropyrimidines and 4H-pyrans can interact differently with DHP binding sites, but, in addition, the data suggest that the binding sites of DHP in CaV1.3 and CaV1.2 LTCCs are very similar.  相似文献   

11.
The role of the inactivated channel conformation in the molecular mechanism of Ca(2+) channel block by the 1,4-dihydropyridine (DHP) (+)-isradipine was analyzed in L-type channel constructs (alpha(1Lc); Berjukow, S., Gapp, F., Aczel, S., Sinnegger, M. J., Mitterdorfer, J., Glossmann, H., and Hering, S. (1999) J. Biol. Chem. 274, 6154-6160) and a DHP-sensitive class A Ca(2+) channel mutant (alpha(1A-DHP); Sinnegger, M. J., Wang, Z., Grabner, M., Hering, S., Striessnig, J., Glossmann, H., and Mitterdorfer, J. (1997) J. Biol. Chem. 272, 27686-27693) carrying the high affinity determinants of the DHP receptor site but inactivating at different rates. Ca(2+) channel inactivation was modulated by coexpressing the alpha(1A-DHP)- or alpha(1Lc)-subunits in Xenopus oocytes with either the beta(2a)- or the beta(1a)-subunit and amino acid substitutions in L-type segment IVS6 (I1497A, I1498A, and V1504A). Contrary to a modulated receptor mechanism assuming high affinity DHP binding to the inactivated state we observed no clear correlation between steady state inactivation and Ca(2+) channel block by (+)-isradipine: (i) a 3-fold larger fraction of alpha(1A-DHP)/beta(1a) channels in steady state inactivation at -80 mV (compared with alpha(1A-DHP)/beta(2a)) did not enhance the block by (+)-isradipine; (ii) different steady state inactivation of alpha(1Lc) mutants at -30 mV did not correlate with voltage-dependent channel block; and (iii) the midpoint-voltages of the inactivation curves of slowly inactivating L-type constructs and more rapidly inactivating alpha(1Lc)/beta(1a) channels were shifted to a comparable extent to more hyperpolarized voltages. A kinetic analysis of (+)-isradipine interaction with different L-type channel constructs revealed a drug-induced inactivated state. Entry and recovery from drug-induced inactivation are modulated by intrinsic inactivation determinants, suggesting a synergism between intrinsic inactivation and DHP block.  相似文献   

12.
13.
The properties of the gating currents (nonlinear charge movements) of human cardiac L-type Ca2- channels and their relationship to the activation of the Ca2+ channel (ionic) currents were studied using a mammalian expression system. Cloned human cardiac alpha1 + rabbit alpha 2 subunits or human cardiac alpha 1 + rabbit alpha 2 + human beta 3 subunits were transiently expressed in HEK293 cells. The maximum Ca2+ current density increased from -3.9 +/- 0.9 pA/pF for the alpha 1 + alpha 2 subunits to -11.6 +/- 2.2 pA/pF for alpha 1 + alpha 2 + beta 3 subunits. Calcium channel gating currents were recorded after the addition of 5 mM Co2+, using a -P/5 protocol. The maximum nonlinear charge movement (Qmax) increased from 2.5 +/- 0.3 nC/muF for alpha 1 + alpha 2 subunit to 12.1 +/- 0.3 nC/muF for alpha 1 + alpha 2 + beta 3 subunit expression. The QON was equal to the QOFF for both subunit combinations. The QON-Vm data were fit by a sum of two Boltzmann expressions and ranged over more negative potentials, as compared with the voltage dependence for activation of the Ca2+ conductance. We conclude that 1) the beta subunit increases the number of functional alpha 1 subunits expressed in the plasma membrane of these cells and 2) the voltage-dependent activation of the human cardiac L-type calcium channel involves the movements of at least two nonidentical and functionally distinct gating structures.  相似文献   

14.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

15.
Catterall WA 《Cell calcium》1998,24(5-6):307-323
Electrophysiological studies of neurons reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. High-voltage-activated neuronal Ca2+ channels are complexes of a pore-forming alpha 1 subunit of about 190-250 kDa, a transmembrane, disulfide-linked complex of alpha 2 and delta subunits, and an intracellular beta subunit, similar to the alpha 1, alpha 2 delta, and beta subunits previously described for skeletal muscle Ca2+ channels. The primary structures of these subunits have all been determined by homology cDNA cloning using the corresponding subunits of skeletal muscle Ca2+ channels as probes. In most neurons, L-type channels contain alpha 1C or alpha 1D subunits, N-type contain alpha 1B subunits, P- and Q-types contain alternatively spliced forms of alpha 1A subunits, R-type contain alpha 1E subunits, and T-type contain alpha 1G or alpha 1H subunits. Association with different beta subunits also influences Ca2+ channel gating substantially, yielding a remarkable diversity of functionally distinct molecular species of Ca2+ channels in neurons.  相似文献   

16.
Voltage-activated Ca2+ channels comprise complexes of a pore-forming Cavα1 and auxiliary subunits Cavβ, Cavα2δ and sometimes Cavγ. The intracellular Cavβ subunit assists in trafficking and surface expression of the Cavα1 subunit and can modulate biophysical properties of the Ca2+ channel. Four genes, Cavβ1-4, exist which confer different properties to Ca2+ currents through the various Cavα1 subunits. Ca2+ currents in cochlear inner (IHC) and outer hair cells (OHC) serving synaptic transmission flow predominantly through the L type Cavα1 subunit Cav1.3, but associated Cavβ subunits are unknown. In the organ of Corti, we found mRNA and protein for all four Cavβ subunits including Cavβ2, but clear assignment of the Cavβ1 4 immunolabelling with hair cells or nerve fibers was difficult. We analyzed Cavβ3 knockout (Cavβ3 / ) and Cavβ4 mutant mice (Cavβ4lh/lh), which had normal hearing. Recording voltage-activated Ba2+ currents from hair cells of the two mouse models revealed distinct significant changes of cell size and Ba2+ current properties compared with their wildtype controls. Neonatal Cavβ4lh/lh IHCs showed reduced membrane capacitances and changes in the voltage dependence and kinetics of current activation, whereas mature IHCs had reduced peak currents compared with Cavβ4wt, altogether indicating the presence of Cavβ4 in IHCs. Ba2+ currents of Cavβ3 / OHCs showed largely reduced amplitudes, changes in the voltage dependence and kinetics of Ba2+ current activation, and increased inactivation compared with Cavβ3wt, pointing to a role of Cavβ3 for OHCs. These results indicate that neither Cavβ3 nor Cavβ4 are indispensable for hair cell Ca2+ currents but contribute to the overall current properties.  相似文献   

17.
Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes, we evaluated the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-3H]-glucose and [U-14C]-glucose were begun at 05.00 h, and at 09.00 h a 3-hour glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 +/- 0.9 mmol/l; PL = 9.3 +/- 1.0 mmol/l, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 +/- 0.8 mmol/l, PL = 14.7 +/- 0.8 mmol/l, p less than 0.05). [6-3H]-glucose turnover (DHP = 1.50 +/- 0.19 mg.kg-1.min-1, PL = 1.77 +/- 0.21 mg.kg-1.min-1, p less than 0.05) and glucose recycling, the difference in [6-3H]-glucose and [U-14C]-glucose turnover rates, decreased with DHP (DHP = 0.25 +/- 0.07 mg.kg-1.min-1, PL = 0.54 +/- 0.10 mg.kg-1.min-1, p less than 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In contrast to the fibroblast growth factor receptor 1 (FGFR1), little is known about intracellular signaling of FGFR2. The signaling cascade of FGFR2 was studied using the perforated patch configuration of the patch-clamp technique in cultured rat retinal pigment epithelial (RPE) cells that express both FGFR1 and FGFR2. Interaction of signaling proteins was studied using immunoprecipitation techniques with membrane proteins from RPE cells and freshly isolated rat brain. When Ba(2+) currents through L-type channels were studied, extracellular application of bFGF (10 ng/ml) led to a shift of the steady-state activation to more negative values. In 50% of cells, an additional increase in maximal current amplitude was observed. This effect was blocked by the tyrosine kinase inhibitor lavendustin A (10(-5) M) but was not influenced by the FGFR1 blocker SU5402 (2 x 10(-5) M) or by the blocker for src-kinase herbimycin A (10(-5) M). Immunoprecipitation of FGFR2 led to coprecipitation of alpha 1D Ca(2+) channel subunits and precipitation of alpha 1D subunits led to coprecipitation of FGFR2. Immunoprecipitation of FGFR1 did not result in the coprecipitation with alpha 1D Ca(2+) channel subunits. The coprecipitation results were comparable when using brain tissue and RPE cells. The alpha 1D subunit-specific band were stained with antiphosphotyrosine antibodies. We conclude that FGFR2 acts via a different signaling cascade than FGFR1. This cascade involves an src-kinase-independent, close functional interaction of FGFR2 and the alpha subunit of neuroendocrine L-type channels.  相似文献   

19.
Invertebrate L-type calcium channel, LCa(v) 1, isolated from the pond snail Lymnaea stagnalis is nearly indistinguishable from mammalian Ca(v) 1.2 (α1C) calcium channel in biophysical characteristics observed in vitro. These L-type channels are likely constrained within a narrow range of biophysical parameters to perform similar functions in the snail and mammalian cardiovascular systems. What distinguishes snail and mammalian L-type channels is a difference in dihydropyridine sensitivity: 100 nM isradipine exhibits a significant block of mammalian Ca(v) 1.2 currents without effect on snail LCa(v)1 currents. The native snail channel serves as a valuable surrogate for validating key residue differences identified from previous experimental and molecular modeling work. As predicted, three residue changes in LCa(v)1 (N_3o18, F_3i10, and I_4i12) replaced with DHP-sensing residues in respective positions of Ca(v) 1.2, (Q_3o18, Y_3i10, and M_4i12) raises the potency of isradipine block of LCa(v)1 channels to that of mammalian Ca(v) 1.2. Interestingly, the single N_3o18_Q mutation in LCa(v) 1 channels lowers DHP sensitivity even further and the triple mutation bearing enhanced isradipine sensitivity, still retains a reduced potency of agonist, (S)-Bay K8644.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号