首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.  相似文献   

2.
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.  相似文献   

3.
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNAAA formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer.  相似文献   

4.
Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. To prevent errors in protein synthesis, many synthetases have evolved editing pathways by which misactivated amino acids (pre-transfer editing) and misacylated tRNAs (post-transfer editing) are hydrolyzed. Previous studies have shown that class II prolyl-tRNA synthetase (ProRS) possesses both pre- and post-transfer editing functions against noncognate alanine. To assess the relative contributions of pre- and post-transfer editing, presented herein are kinetic studies of an Escherichia coli ProRS mutant in which post-transfer editing is selectively inactivated, effectively isolating the pre-transfer editing pathway. When post-transfer editing is abolished, substantial levels of alanine mischarging are observed under saturating amino acid conditions, indicating that pre-transfer editing alone cannot prevent the formation of Ala-tRNA Pro. Steady-state kinetic parameters for aminoacylation measured under these conditions reveal that the preference for proline over alanine is 2000-fold, which is well within the regime where editing is required. Simultaneous measurement of AMP and Ala-tRNA Pro formation in the presence of tRNA Pro suggested that misactivated alanine is efficiently transferred to tRNA to form the mischarged product. In the absence of tRNA, enzyme-catalyzed Ala-AMP hydrolysis is the dominant form of editing, with "selective release" of noncognate adenylate from the active site constituting a minor pathway. Studies with human and Methanococcus jannaschii ProRS, which lack a post-transfer editing domain, suggest that enzymatic pre-transfer editing occurs within the aminoacylation active site. Taken together, the results reported herein illustrate how both pre- and post-transfer editing pathways work in concert to ensure accurate aminoacylation by ProRS.  相似文献   

5.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

6.
Aminoacyl tRNA synthetases (aaRSs) catalyze the first step in protein biosynthesis, establishing a connection between codons and amino acids. To maintain accuracy, aaRSs have evolved a second active site that eliminates noncognate amino acids. Isoleucyl tRNA synthetase edits valine by two tRNA(Ile)-dependent pathways: hydrolysis of valyl adenylate (Val-AMP, pretransfer editing) and hydrolysis of mischarged Val-tRNA(Ile) (posttransfer editing). Not understood is how a single editing site processes two distinct substrates--an adenylate and an aminoacyl tRNA ester. We report here distinct mutations within the center for editing that alter adenylate but not aminoacyl ester hydrolysis, and vice versa. These results are consistent with a molecular model that shows that the single editing active site contains two valyl binding pockets, one specific for each substrate.  相似文献   

7.
Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNAPro. The most important functional element of this catalytic mechanism is the 2′-OH group of the terminal adenosine 76 of Ala-tRNAPro, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3′-O atom of A76.  相似文献   

8.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

9.
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases.  相似文献   

10.
Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule.  相似文献   

11.
The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.  相似文献   

12.
Uter NT  Perona JJ 《Biochemistry》2006,45(22):6858-6865
Structure-based mutational analysis was employed to probe an unusual intramolecular interaction between partially buried glutamate residues adjacent to the active site of Escherichia coli glutaminyl-tRNA synthetase (GlnRS). The crystal structures of unliganded GlnRS and the GlnRS-tRNA(Gln) complex reveal that the Glu34 and Glu73 side chain carboxylates contact each other only in the tRNA-bound state and that the interaction is formed via mutual induced-fit transitions that occur en route to the ground-state Michaelis complex. Steady-state and transient kinetic analysis of mutant enzymes suggest that the formation of this intermolecular contact is a key event that facilitates the proper formation of the active site. Mutants at both positions destabilize the binding of the substrate glutamine at the opposite side of the active-site cleft, whereas Glu73 appears to play an additional important role by promoting the correct binding of the 3'-acceptor end of tRNA adjacent to both ATP and glutamine. The data suggest the existence of multiple structural pathways by which the binding of tRNA propagates conformational transitions leading to the proper formation of the glutamine binding site. The single-turnover kinetic analysis also establishes that the Glu34 carboxylate does not play a direct enzymatic role as a catalytic base to help deprotonate the tRNA-A76 nucleophilic 2'-hydroxyl group. The elimination of this previously proposed mechanism, together with recent chemical modification experiments in the histidyl-tRNA synthetase system, emphasizes that substrate-assisted catalysis by the phosphate of the aminoacyl adenylate may be a common means by which all tRNA synthetases facilitate the aminoacyl transfer step of the reaction.  相似文献   

13.
Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNAThr2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNAThr1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNAThrs during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNAThr2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNAThr1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNAThr1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core.  相似文献   

14.
This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNA(Gln). Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNA(Gln).GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNA(Gln) species were synthesized with either a 2'-deoxy AMP or 3'-deoxy AMP as their 3'-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2'-hydroxyl of the terminal adenosine; there is no glutaminylation of the 3'-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNA(Gln) are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed.  相似文献   

15.
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.  相似文献   

16.
H Jakubowski 《Biochemistry》1999,38(25):8088-8093
Lysyl-tRNA synthetase (LysRS), a class II enzyme whose major function is to provide Lys-tRNALys for protein synthesis, also catalyzes aminoacylation of tRNALys with arginine, threonine, methionine, leucine, alanine, serine, and cysteine. The limited selectivity in the tRNA aminoacylation reaction appears to be due to inefficient editing of some amino acids (Met, Leu, Cys, Ala, Thr) by a pre-transfer mechanism or the absence of editing of other amino acids (Arg and Ser). Purified Arg-tRNALys, Thr-tRNALys, and Met-tRNALys were essentially not deacylated by LysRS, indicating that the enzyme does not possess a post-transfer editing mechanism. However, LysRS possesses an efficient pre-transfer editing mechanism which prevents misacylation of tRNALys with ornithine. A novel feature of this editing reaction is that ornithine lactam is formed by the facile cyclization of ornithyl adenylate.  相似文献   

17.
18.
Guth E  Connolly SH  Bovee M  Francklyn CS 《Biochemistry》2005,44(10):3785-3794
Aminoacyl-tRNA synthetases (aaRS) join amino acids to their cognate transfer RNAs, establishing an essential coding relationship in translation. To investigate the mechanism of aminoacyl transfer in class II Escherichia coli histidyl-tRNA synthetase (HisRS), we devised a rapid quench assay. Under single turnover conditions with limiting tRNA, aminoacyl transfer proceeds at 18.8 s(-)(1), whereas in the steady state, the overall rate of aminoacylation is limited by amino acid activation to a rate of 3 s(-)(1). In vivo, this mechanism may serve to allow the size of amino acid pools and energy charge to control the rate of aminoacylation and thus protein synthesis. Aminoacyl transfer experiments using HisRS active site mutants and phosphorothioate-substituted adenylate showed that substitution of the nonbridging Sp oxygen of the adenylate decreased the transfer rate at least 10 000-fold, providing direct experimental evidence for the role of this group as a general base for the reaction. Other kinetic experiments revealed that the rate of aminoacyl transfer is independent of the interaction between the carboxyamide group of Gln127 and the alpha-carboxylate carbon, arguing against the formation of a tetrahedral intermediate during the aminoacyl transfer. These experiments support a substrate-assisted concerted mechanism for HisRS, a feature that may generalize to other aaRS, as well as the peptidyl transferase center.  相似文献   

19.
A R Fersht  M M Kaethner 《Biochemistry》1976,15(15):3342-3346
Valyl-tRNA synthetase from Bacillus stearothermophilus activates thereonine and forms a 1:1 complex with threonyl adenylate, but it does not catalyze the net formation of threonyl-tRNAVal at pH 7.78 and 25 degrees C in the quenched flow apparatus it decomposes at a rate constant of 36s-1. During this process there is a transient formation of Thr-tRNAVal reaching a maximum at 25 ms and rapidly falling to zero after 150 ms. At the peak, 22% of the (14C) threonine from the complex is present as (14C) Thr-tRNA. The reaction may be quenched with phenol and the partially mischarged tRNA isolated. The enzyme catalyzes its hydrolysis with a rate constant of 40s-1. The data fit a kinetic scheme in which 62% of the threonine from the threonyl adenylate is transferred to the tRNA. This may be compared with the rate constant of 12s-1 at which 84% of the valine is transferred to tRNAVal from the enzyme-bound valyl adenylate, and the rate constant of 0.015s-1 for the subsequent hydrolysis of Val-tRNAVal. Inhibition studies indicate a distinct second site for hydrolysis. The translocation of the aminoacyl moiety between the two sites could be mediated by a transfer between the 2'-and 3'-OH groups of the terminal adenosine fo the tRNA. The hyperspecificity of the enzyme is based on discriminating between the two competing substrates twice: once against the undesired substrate in the synthetic step, and once against the desired substrate in the destructive step.  相似文献   

20.
As a continuation of our studies on plant (yellow lupin, Lupinus luteus) aminoacyl-tRNA synthetases we describe here formation and some properties of valyl-tRNA synthetase-bound valyl adenylate (EVal(Val-AMP)) and seryl-tRNA synthetase-bound seryl adenylate (ESer(Ser-AMP)). Valyl-tRNA synthetase-bound valyl adenylate was detected and isolated by several approaches in the pH range 6--10. In that range inorganic pyrophosphatase increases the amount of valyl adenylate by factor 1.8 regardless of pH. 50% of valine from the EVal(Val-AMP) complex isolated by Sephadex G-100 gel filtration was transferred to tRNA with a rate constant greater than 4 min-1 (pH 6.2, 10 degrees C). The ratio of valine to AMP in the enzyme-bound valyl adenylate is 1 : 1 and it is not changed by the presence of periodate-oxidized tRNA. In contrast to enzyme-bound valyl adenylate, formation of ESer(Ser-AMP) is very sensitive to pH. Inorganic pyrophosphatase increases the amount of seryl adenylate by a factor 6 at pH 8.0 and 30 at pH 6.9 60% of serine from the ESer(Ser-AMP) complex was transferred to tRNA with a rate constant greater than 4 min-1 (pH 8.0, 0 degrees C). The ratio of serine to AMP in the enzyme-bound seryl adenylate is 1 : 1. The rate of synthesis of the enzyme-bound aminoacyl adenylates was measured by ATP-PPi exchange. Michaelis constants for the substrates of valyl-tRNA and seryl-tRNA synthetases in ATP-PPi exchange were determined. Effects of pH, MgCl2 and KCl on the initial velocity of aminoacyl adenylate formation are described. For comparison, catalytic indices in the aminoacylation reactions catalyzed by both lupin enzymes are given and effects of pH, MgCl2 and KCl on tRNA aminoacylation are presented as well. Under some conditions, e.g. at low pH or high salt concentration, lupin valyl-tRNA and seryl-tRNA synthetase are active exclusively in ATP-PPi exchange reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号