首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding.  相似文献   

2.
Although angiotensin II (Ang II) binds to Ang II type 1 (AT1) and type 2 (AT2) receptors, AT1 and AT2 receptors have antagonistic actions with regard to cell signaling. The molecular mechanisms that underlie this antagonism are not well understood. We examined AT1 and AT2 receptor-induced signal cross-talk in the cytoplasm and the importance of the hetero-dimerization of AT1 receptor with AT2 receptor on the cell surface. AT1 and AT2 receptors showed antagonistic effects toward inositol phosphate production. AT1 receptors mainly formed homo-dimers, rather than hetero-dimers with AT2 receptor, on the cell surface as determined by immunoprecipitation, and subsequently induced cell signals. AT2 receptor mainly formed homo-dimers, rather than hetero-dimers with AT1 receptor, on the cell surface. The expression levels of homo-dimerized AT1 receptor or AT2 receptor on the cell surface did not change after treatment with Ang II, the AT1 receptor antagonist telmisartan or the AT2 receptor antagonist PD123319. Finally, AT1 and AT2 receptor-induced signals antagonized phospholipase C-β3 phosphorylation. In conclusion, Ang II-induced AT1 receptor signals may be mainly blocked by AT2 receptor signals through their negative cross-talk in the cytoplasm rather than by the hetero-dimerization of both receptors on the cell surface. The proper balance of the expression levels of AT1 and AT2 receptors might be critical for the antagonistic action between these receptors.  相似文献   

3.
1. There are two Angiotensin II systems in the brain. The discovery of brain Angiotensin II receptors located in neurons inside the blood brain barrier confirmed the existence of an endogenous brain Angiotensin II system, responding to Angiotensin II generated in and/or transported into the brain. In addition, Angiotensin II receptors in circumventricular organs and in cerebrovascular endothelial cells respond to circulating Angiotensin II of peripheral origin. Thus, the brain responds to both circulating and tissue Angiotensin II, and the two systems are integrated. 2. The neuroanatomical location of Angiotensin II receptors and the regulation of the receptor number are most important to determine the level of activation of the brain Angiotensin II systems. 3. Classical, well-defined actions of Angiotensin II in the brain include the regulation of hormone formation and release, the control of the central and peripheral sympathoadrenal systems, and the regulation of water and sodium intake. As a consequence of changes in the hormone, sympathetic and electrolyte systems, feed back mechanisms in turn modulate the activity of the brain Angiotensin II systems. It is reasonable to hypothesize that brain Angiotensin II is involved in the regulation of multiple additional functions in the brain, including brain development, neuronal migration, process of sensory information, cognition, regulation of emotional responses, and cerebral blood flow. 4. Many of the classical and of the hypothetical functions of brain Angiotensin II are mediated by stimulation of Angiotensin II AT1 receptors. 5. Brain AT2 receptors are highly expressed during development. In the adult, AT2 receptors are restricted to areas predominantly involved in the process of sensory information. However, the role of AT2 receptors remains to be clarified. 6. Subcutaneous or oral administration of a selective and potent non-peptidic AT1 receptor antagonist with very low affinity for AT2 receptors and good bioavailability blocked AT1 receptors not only outside but also inside the blood brain barrier. The blockade of the complete brain Angiotensin II AT1 system allowed us to further clarify some of the central actions of the peptide and suggested some new potential therapeutic avenues for this class of compounds. 7. Pretreatment with peripherally administered AT1 antagonists completely prevented the hormonal and sympathoadrenal response to isolation stress. A similar pretreatment prevented the development of stress-induced gastric ulcers. These findings strongly suggest that blockade of brain AT1 receptors could be considered as a novel therapeutic approach in the treatment of stress-related disorders. 8. Peripheral administration of AT1 receptor antagonists strongly affected brain circulation and normalized some of the profound alterations in cerebrovascular structure and function characteristic of chronic genetic hypertension. AT1 receptor antagonists were capable of reversing the pathological cerebrovascular remodeling in hypertension and the shift to the right in the cerebral autoregulation, normalizing cerebrovascular compliance. In addition, AT1 receptor antagonists normalized the expression of cerebrovascular nitric oxide synthase isoenzymes and reversed the inflammatory reaction characteristic of cerebral vessels in hypertension. As a consequence of the normalization of cerebrovascular compliance and the prevention of inflammation, there was, in genetically hypertensive rats a decreased vulnerability to brain ischemia. After pretreatment with AT1 antagonists, there was a protection of cerebrovascular flow during experimental stroke, decreased neuronal death, and a substantial reduction in the size of infarct after occlusion of the middle cerebral artery. At least part of the protective effect of AT1 receptor antagonists was related to the inhibition of the Angiotensin II system, and not to the normalization of blood pressure. These results indicate that treatment with AT1 receptor antagonists appears to be a major therapeutic avenue for the prevention of ischemia and inflammatory diseases of the brain. 9. Thus, orally administered AT1 receptor antagonists may be considered as novel therapeutic compounds for the treatment of diseases of the central nervous system when stress, inflammation and ischemia play major roles. 10. Many questions remain. How is brain Angiotensin II formed, metabolized, and distributed? What is the role of brain AT2 receptors? What are the molecular mechanisms involved in the cerebrovascular remodeling and inflammation which are promoted by AT1 receptor stimulation? How does Angiotensin II regulate the stress response at higher brain centers? Does the degree of activity of the brain Angiotensin II system predict vulnerability to stress and brain ischemia? We look forward to further studies in this exiting and expanding field.  相似文献   

4.
The renin-angiotensin and kallikrein-kinin systems are key regulators of vascular tone and inflammation. Angiotensin II, the principal effector of the renin-angiotensin system, promotes vasoconstriction by activating angiotensin AT1 receptors. The opposing effects of the kallikrein-kinin system are mediated by bradykinin acting on B1 and B2 bradykinin receptors. The renin-angiotensin and kallikrein-kinin systems engage in cross-talk at multiple levels, including the formation of AT1-B2 receptor heterodimers. In primary vascular smooth muscle cells, we find that the arrestin pathway-selective AT1 agonist, [Sar1,Ile4,Ile8]-AngII, but not the neutral AT1 antagonist, losartan, inhibits endogenous B2 receptor signaling. In a transfected HEK293 cell model that recapitulates this effect, we find that the actions of [Sar1,Ile4, Ile8]-AngII require the AT1 receptor and result from arrestin-dependent co-internalization of AT1-B2 heterodimers. BRET50 measurements indicate that AT1 and B2 receptors efficiently heterodimerize. In cells expressing both receptors, pretreatment with [Sar1,Ile4,Ile8]-AngII blunts B2 receptor activation of Gq/11-dependent intracellular calcium influx and Gi/o-dependent inhibition of adenylyl cyclase. In contrast, [Sar1,Ile4,Ile8]-AngII has no effect on B2 receptor ligand affinity or bradykinin-induced arrestin3 recruitment. Both radioligand binding assays and quantitative microscopy-based analysis demonstrate that [Sar1,Ile4,Ile8]-AngII promotes internalization of AT1-B2 heterodimers. Thus, [Sar1,Ile4,Ile8]-AngII exerts lateral allosteric modulation of B2 receptor signaling by binding to the orthosteric ligand binding site of the AT1 receptor and promoting co-sequestration of AT1-B2 heterodimers. Given the opposing roles of the renin-angiotensin and kallikrein-kinin systems in vivo, the distinct properties of arrestin pathway-selective and neutral AT1 receptor ligands may translate into different pharmacologic actions.  相似文献   

5.
SUMMARY 1. Circulating and locally formed Angiotensin II regulates the cerebral circulation through stimulation of AT1 receptors located in cerebrovascular endothelial cells and in brain centers controlling cerebrovascular flow.2. The cerebrovascular autoregulation is designed to maintain a constant blood flow to the brain, by vasodilatation when blood pressure decreases and vasoconstriction when blood pressure increases.3. During hypertension, there is a shift in the cerebrovascular autoregulation to the right, in the direction of higher blood pressures, as a consequence of decreased cerebrovascular compliance resulting from vasoconstriction and pathological growth. In hypertension, when perfusion pressure decreases as a consequence of blockade of a cerebral artery, reduced cerebrovascular compliance results in more frequent and more severe strokes with a larger area of injured tissue.4. There is a cerebrovascular angiotensinergic overdrive in genetically hypertensive rats, manifested as an increased expression of cerebrovascular AT1 receptors and increased activity of the brain Angiotensin II system. Excess AT1 receptor stimulation is a main factor in the cerebrovascular pathological growth and decreased compliance, the alteration of the cerebrovascular eNOS/iNOS ratio, and in the inflammatory reaction characteristic of cerebral blood vessels in genetic hypertension. All these factors increase vulnerability to brain ischemia and stroke.5. Sustained blockade of AT1 receptors with peripheral and centrally active AT1 receptor antagonists (ARBs) reverses the cerebrovascular pathological growth and inflammation, increases cerebrovascular compliance, restores the eNOS/iNOS ratio and decreases cerebrovascular inflammation. These effects result in a reduction of the vulnerability to brain ischemia, revealed, when an experimental stroke is produced, in protection of the blood flow in the zone of penumbra and substantial reduction in neuronal injury.6. The protection against ischemia resulting is related to inhibition of the Renin–Angiotensin System and not directly related to the decrease in blood pressure produced by these compounds. A similar decrease in blood pressure as a result of the administration of β-adrenergic receptor and calcium channel blockers does not protect from brain ischemia.7. In addition, sustained AT1 receptor inhibition enhances AT2 receptor expression, associated with increased eNOS activity and NO formation followed by enhanced vasodilatation. Direct AT1 inhibition and indirect AT2 receptor stimulation are associated factors normalizing cerebrovascular compliance, reducing cerebrovascular inflammation and decreasing the vulnerability to brain ischemia.8. These results strongly suggest that inhibition of AT1 receptors should be considered as a preventive therapeutic measure to protect the brain from ischemia, and as a possible novel therapy of inflammatory conditions of the brain.  相似文献   

6.
Abstract

The effects of the angiotensin-II (All) agonists and antagonists on both 125I-SARILE binding and phosphoinositol (PI) accumulation in clone 9 cells were examined. Clone 9 cells, which are derived from rat liver, have been shown to respond to All agonists with an increase in PI accumulation which is inhibitable by Sar1, Ile8-AII (SARILE) and DUP-753 but not PD-123319, suggesting that they possess the AT1 subtype of All receptor. The present results confirmed these properties. The order of potency of AII agonists was AII> AIII> AI. Clone 9 cells also possessed binding sites for 125I-SARILE. The majority of these were AT1 type receptors, although a small number of AT2 receptors may also have been present. The order of potency of All agonists in inhibiting 125-SARILE binding was All » AIII> = AI. The difference in rank order of potency between the functional and binding assays was due to AIII being much less potent in the binding assay than the functional assay. Since the potency of AIII relative to AII was lower than that at either AT1 or AT2 subtypes of AII receptor, these data suggest that an additional subtype, with selectively low affinity for AIII, exists.  相似文献   

7.
8.
Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT1) receptor antagonist but not a type-2 (AT2) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT1-like but not AT2-like receptor. We then cloned and characterized cDNA of the tree frog AT1 receptor from the brain. The tree frog AT1 receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT1 receptor and exhibits the functional characteristics of an Ang II receptor. AT1 receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT1 receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT1 receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.  相似文献   

9.
ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely attenuated the increase in circulating level of two inflammatory cytokines, TNFα and IL-6, in irradiated mice; and this shows that DAA-I exerted additional anti-inflammatory actions, which could also have contributed to its radioprotection. These findings show that DAA-I acts via a novel mechanism of action on the angiotensin AT1 receptor to specifically release PGE2, which mediates radioprotection in the gamma irradiated mice.  相似文献   

10.
It has been reported previously that some angiotensin II receptor blockers not only antagonize angiotensin II type 1 receptor (AT1R), but also exert stimulation in peroxisome proliferator-activated receptor γ (PPARγ) partial activation, among which telmisartan displays the best. Telmisartan has been tested as a bifunctional ligand with antihypertensive and hypoglycemic activity. Aiming at more potent leads with selective AT1R antagonism and PPARγ partial agonism, the three parts of telmisartan including the distal benzimidazole ring, the biphenyl moiety, and the carboxylic acid group experienced modification by core hopping method in our study. The central benzimidazole ring, however, remained intact considering its great affinity toward AT1R and PPARγ. We utilized computational techniques for the sake of details on the binding interactions and conformational stability. Standard precision docking analysis and absorption, distribution, metabolism, excretion, and toxicity prediction received 10 molecules with higher Glide scores, similar interactions, and improved pharmacokinetic profiles compared to telmisartan. Comp#91 with highest scores for AT1R (?11.92 kcal/mol) and PPARγ (?13.88 kcal/mol) exhibited excellent binding modes and pharmacokinetic parameters. Molecular dynamics trajectories on best docking pose of comp#91 confirmed the docking results and verified the conformational stability with both receptors throughout the course of 20-ns simulations. Thus, comp#91 could be identified as a promising lead in the development of dual AT1R antagonist and PPARγ partial agonist against hypertension and type 2 diabetes.  相似文献   

11.
Commercially available Angiotensin II AT1 receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, six commercially available AT1 receptor antibodies were characterized by established criteria: sc-1173 and sc-579 from Santa Cruz Biotechnology, Inc., AAR-011 from Alomone Labs, Ltd., AB15552 from Millipore, and ab18801 and ab9391 from Abcam. The immunostaining patterns observed were different for every antibody tested, and were unrelated to the presence or absence of AT1 receptors. The antibodies detected a 43?kDa band in western blots, corresponding to the predicted size of the native AT1 receptor. However, identical bands were observed in wild-type mice and in AT1A knock-out mice not expressing the target protein. Moreover, immunoreactivity detected in rat hypothalamic 4B cells not expressing AT1 receptors or transfected with AT1A receptor construct was identical, as revealed by western blotting and immunocytochemistry in cultured 4B cells. Additional prominent immunoreactive bands above and below 43?kDa were observed by western blotting in extracts from tissues of AT1A knock-out and wild-type mice and in 4B cells with or without AT1 receptor expression. In all cases, the patterns of immunoreactivity were independent of the AT1 receptor expression and different for each antibody studied. We conclude that, in our experimental setup, none of the commercially available AT1 receptor antibodies tested met the criteria for specificity and that competitive radioligand binding remains the only reliable approach to study AT1 receptor physiology in the absence of full antibody characterization.  相似文献   

12.
13.
Persistent left ventricular (LV) dysfunction after reperfused myocardial infarction (RMI) is a significant problem and angiotensin II (AngII) type 1 receptor (AT1R) blockers (ARBs) may limit reperfusion injury involving upregulation of AngII type 2 receptors (AT2R). To determine whether ARBs valsartan and irbesartan limit reperfusion injury and upregulate AT2R protein during RMI, we randomized dogs with anterior RMI (90 min ischemia; 120 min reperfusion) to 4 groups [valsartan (n = 6); irbesartan (n = 9); vehicle controls (n = 8); and sham (n = 6)] and measured serial in vivo hemodynamics, LV systolic and diastolic function, and inhibition of AngII pressor responses to the ARBs, and ex vivo infarct size, and regional AT1R and AT2R protein expression at the end of the reperfusion. Compared to the control group, both ARBs significantly limited the increase in left atrial pressure, promptly limited the deterioration of LV dP/dtmax, dP/dtmin, ejection fraction and diastolic function, limited infarct expansion and thinning, and limited infarct size. Importantly, both ARBs increased AT2R protein in the postischemic reperfused zone, with no change in AT1R protein. There were no changes in the sham group. The results suggest that limitation of myocardial injury associated with AT1R blockade combined with upregulation of AT2R protein expression contributes to the cardioprotective effects of ARBs during RMI. This beneficial effect of ARBs on persistent LV dysfunction after RMI should be evaluated in the clinical setting to determine the relative benefit of ARBs in patients who undergo reperfusion therapy for acute coronary syndromes.  相似文献   

14.
In different native tissues and cells the receptor for the vasodepressor bradykinin, B2, forms dimers with the receptor for the vasopressor angiotensin II, AT1. Because AT1/B2 heterodimers may contribute to enhanced angiotensin II-stimulated signaling under pathophysiological conditions, we analyzed mechanisms of AT1/B2 heterodimerization. We found that efficient B2 receptor maturation was a prerequisite for heterodimerization because only the fully mature B2 receptor was capable to interact with AT1. To identify chaperones involved in B2 receptor maturation and heterodimerization we performed microarray gene expression profiling of human embryonic kidney (HEK293) cells. The expression of the chaperone calreticulin was up-regulated in cells with efficient B2 receptor maturation. Vice versa, upon down regulation of calreticulin expression by RNA interference, B2 receptor maturation and AT1/B2 receptor heterodimerization were significantly impaired. Concomitantly, the B2 receptor-mediated enhancement of AT1-stimulated signaling was reduced. Thus, calreticulin enhances B2 receptor maturation and heterodimerization with AT1.  相似文献   

15.
Doxorubicin (DOX), one useful chemotherapeutic agent, is limited in clinical use because of its serious cardiotoxicity. Growing evidence suggests that angiotensin receptor blockers (ARBs) have cardioprotective effects in DOX‐induced cardiomyopathy. However, the detailed mechanisms underlying the action of ARBs on the prevention of DOX‐induced cardiomyocyte cell death have yet to be investigated. Our results showed that angiotensin II receptor type I (AT1R) plays a critical role in DOX‐induced cardiomyocyte apoptosis. We found that MAPK signaling pathways, especially ERK1/2, participated in modulating AT1R gene expression through DOX‐induced mitochondrial ROS release. These results showed that several potential heat shock binding elements (HSE), which can be recognized by heat shock factors (HSFs), located at the AT1R promoter region. HSF2 markedly translocated from the cytoplasm to the nucleus when cardiomyocytes were damaged by DOX. Furthermore, the DNA binding activity of HSF2 was enhanced by DOX via deSUMOylation. Overexpression of HSF2 enhanced DOX‐induced cardiomyocyte cell death as well. Taken together, we found that DOX induced mitochondrial ROS release to activate ERK‐mediated HSF2 nuclear translocation and AT1R upregulation causing DOX‐damaged heart failure in vitro and in vivo.  相似文献   

16.
Abstract: Antisense Oligonucleotides were developed to study the expression and function of angiotensin type 1 (AT1) receptors in cultured cells and brain. In both liver epithelial WB and neuro-blastoma N1E-115 cells AT1 antisense oligomers substantially decreased AT1 receptor density, whereas angiotensin type 2 (AT2) receptors remained unchanged. Similarly, repeated intracerebroventricular injections of AT1 antisense oligomers in rats decreased AT1 receptor density in hypothalamic-thalamic-septal tissue, and AT2 receptors were unaffected. Intracerebroventricular antisense oligomers also attenuated drinking elicited by intra-cerebroventricular angiotensin II but not the cholinomimetic carbachol. Collectively, these results demonstrate that antisense Oligonucleotides attenuate angiotensin receptor expression and function in behaving animals.  相似文献   

17.
To address conflicting reports concerning the number of angiotensin II (AII) receptor type 1 (AT1) coding loci in vertebrates, Southern blot analysis was used to determine the genomic representation of AT1 receptor genes in animals comprising a divergent evolutionary spectrum. The data demonstrate that the AT1 receptor gene is present as a single genomic copy in a broad spectrum of animals including human, monkey, dog, cow, rabbit, and chicken. In contrast, members of the rodent taxonomic order contain two genes in their genomes. These two genes may have arisen in rodents as a consequence of a gene duplication event that occurred during evolution following the branching of rodents from the mammalian phylogenetic tree. In order to investigate the properties of the human AT1 receptor in a pure cell system, the recombinant human AT1 receptor was stably expressed in mouse L cells. An isolated cell line, designated LhAT1-D6, was found to express abundant levels of recombinant receptor [430±15 fmol/mg] exhibiting high affinity [KD=0.15±0.02 nM] for [125I][SAR1, IIe8] angiotensin II (SIA). The pharmacological profile of ligands competing for [125I] SIA binding to the expressed recèptor was in accordance with that of the natural receptor. Radioligand binding of the expressed receptor was decreased in the presence of the non-hydrolyzable analog of GTP, guanosine 5-(-thio) triphosphate [GTPS]. Angiotensin II evoked a rapid efflux of45Ca2+ from LhAT1-D6 cells that was blocked by AT1 receptor specific antagonists. In addition, AII inhibited forskolin-stimulated cAMP accumulation in these cells which was blocked by the AT-1 antagonist. Thus, the LhAT1-D6 cell line provides a powerful tool to explore the human AT1 receptor regulation.  相似文献   

18.
Angiotensin-(1–7) [Ang-(1–7)] is a biologically active heptapeptide that may counterbalance the physiological actions of angiotensin II (Ang II) within the renin-angiotensin system (RAS). Here, we evaluated whether activation of the Mas receptor with the oral agonist, AVE 0991, would have renoprotective effects in a model of adriamycin (ADR)-induced nephropathy. We also evaluated whether the Mas receptor contributed for the protective effects of treatment with AT1 receptor blockers. ADR (10 mg/kg) induced significant renal injury and dysfunction that was maximal at day 14 after injection. Treatment with the Mas receptor agonist AVE 0991 improved renal function parameters, reduced urinary protein loss and attenuated histological changes. Renoprotection was associated with reduction in urinary levels of TGF-β. Similar renoprotection was observed after treatment with the AT1 receptor antagonist, Losartan. AT1 and Mas receptor mRNA levels dropped after ADR administration and treatment with losartan reestablished the expression of Mas receptor and increased the expression of ACE2. ADR-induced nephropathy was similar in wild type (Mas+/+) and Mas knockout (Mas −/−) mice, suggesting there was no endogenous role for Mas receptor activation. However, treatment with Losartan was able to reduce renal injury only in Mas+/+, but not in Mas −/− mice. Therefore, these findings suggest that exogenous activation of the Mas receptor protects from ADR-induced nephropathy and contributes to the beneficial effects of AT1 receptor blockade. Medications which target specifically the ACE2/Ang-(1–7)/Mas axis may offer new therapeutic opportunities to treat human nephropathies.  相似文献   

19.
ObjectiveGABARAP, a small (117 aa) trafficking protein, binds to the C-terminal, cytoplasmic domain of rat angiotensin type-1A receptor (AT1R), the predominant effector of the octapeptide angiotensin II (Ang II) (Cook et al., Circ. Res. 2008;102:1539–47). The objectives of this study were to map the interaction domains of GABARAP and AT1R, to determine the effect of GABARAP association on AT1R signaling activity, and to determine the importance of post-translational processing of GABARAP on accumulation of AT1R on the plasma membrane and its signaling function.ResultsDeletion analysis identified two regions within GABARAP necessary for interaction with AT1R in yeast two-hybrid assays: 1) a domain comprised of residues 32–51 that is nearly identical to that involved in binding and intracellular trafficking of the GABAA receptor and 2) a domain encompassing the C-terminal 21 aa. The GABARAP interaction domain of AT1R was delimited to the 15 aa immediately downstream of the last membrane spanning region. Overexpression of GABARAP in rat adrenal pheochromocytoma PC-12 cells increased the cell-surface expression of AT1R and Ang II-dependent activation of the cAMP signaling pathway. Residues within AT1R necessary for these responses were identified by mutational analysis. In PC-12 cells, GABARAP was constitutively and quantitatively cleaved at the C-terminus peptide bond and this cleavage was prevented by mutation of Gly116. Wild-type GABARAP and the G116A mutant were, however, equally effective in stimulating AT1R surface expression and signaling activity.ConclusionsGABARAP and AT1R interact through discrete domains and this association regulates the cell-surface accumulation and, consequently, ligand-induced function of the receptor. Unlike that observed with the GABAA receptor, this regulation is not dependent on C-terminal processing and modification of GABARAP.  相似文献   

20.
Angiotensin II (Ang II) plays an important role in inflammatory process. Acute lung injury (ALI), an inflammatory disorder of the lung, is commonly associated with endotoxemia; however, the mechanism that endotoxin (lipopolysaccharide, LPS) induces the inflammatory response in ALI is not well defined. Here, we showed, in LPS-induced ALI rat model, that Ang II and Ang II type 1 (AT1) receptor were significantly increased in lung tissues, compared with those in controls. Meanwhile, nuclear factor (NF)-κB-DNA-binding activity, tumor necrosis factor (TNF)-α mRNA, and pneumocytic apoptosis were significantly increased. Moreover, pretreatment of rats with losartan, an antagonist of AT1 receptor for Ang II, improved the inflammation, reduced the elevation of Ang II and AT1 receptor, and inhibited NF-κB-DNA-binding activity, expression of TNF-α mRNA, and pneumocytic apoptosis. The data indicate that Ang II may mediate the inflammatory process in LPS-induced ALI through AT1 receptor, which can be blocked by losartan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号