首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Assessment of ventricular dyssynchrony in patients with heart failure is used for selecting candidates for cardiac resynchronization therapy (CRT). The patterns of regional distribution of dyssynchrony in a population with LBBB with and without heart failure have not been well delineated. This aspect forms the object of the study.

Methods

Tissue Doppler Imaging (TDI) data of consecutive patients with heart failure and LBBB (Group A) was compared with those with LBBB and normal LV function (Group B). All patients had standard 2D-echocardigraphic examination and TDI. Tissue velocity curves obtained by placing sample volumes in opposing basal and mid segments of septal, lateral, inferior, anterior and posterior walls were analyzed. Inter ventricular dyssynchrony (IVD) was assessed by the difference between aortic and pulmonary pre ejection intervals. LV dyssynchrony (LVD) was assessed by the difference in times to peak velocity. A delay of ≥ 40 msec was considered significant for presence of IVD and LVD.

Results

There were 103 patients in Group A and 25 in Group B. The mean QRS duration and PR intervals respectively were 146 ± 25 vs. 152±20 msec and 182± 47 vs. 165±36 msec. (p=NS) LVEF in the 2 groups were (32 ± 6 % vs. 61± 11%; p< 0.01). Prevalence of dyssynchrony in the HF group compared to Group B was 72% vs. 16%, (P< 0.01). Lateral wall dyssynchrony in the 2 groups was 37% vs. 0% (p< 0.01) while septal dyssynchrony was 16% vs. 16% (p- NS).

Conclusions

72% of heart failure patients with LBBB have documented dyssynchrony on TDI, which has a heterogeneous regional distribution. Dyssynchrony may be seen in LBBB and normal hearts but it is does not involve the lateral wall. Septal dyssynchrony in heart failure patients may not have the same significance as lateral wall delay.  相似文献   

2.
3.
This study investigates how tissue Doppler imaging (TDI) and speckle tracking echocardiography (STE) describe regional myocardial deformation during controlled reductions of left anterior descending (LAD) coronary artery perfusion pressure. In eight anesthetized pigs, a shunt with constrictor was installed from the brachiocephalic artery to the LAD. Data were obtained with open shunt, followed by four degrees of stenosis (S1-S4) of increasing severity: S1, ~15%; S2, ~35%; S3, ~50%; and S4, ~60% reductions of LAD perfusion pressure. At each situation, microspheres for perfusion measurements were injected and left ventricular (LV) short- and long-axis cineloops were recorded. In the anterior wall, radial, circumferential, and longitudinal one-layer STE strain, one-layer radial TDI strain, and three-layer radial TDI and STE strain were measured. LV peak mean rotation was measured at six equidistant levels from apex to base (in 7 pigs). LV torsion was calculated from end-systolic mean rotation. With open shunt, three-layer TDI analysis showed a transmural strain gradient with no perfusion gradient. Perfusion, one-layer TDI strain, and strain in the mid- and subendocardium from three-layer TDI were reduced at S2 (P < 0.05). STE strain was not affected until S3 (P < 0.05). Peak mean rotation, increasing toward the apex, decreased at the three apical levels at S4 (P < 0.05). LV torsion did not decrease (P = 0.26). In conclusion, TDI strain detected dysfunction already with minor changes in global hemodynamics, whereas STE strain was first reduced with moderate changes. LV peak mean rotation was not reduced until severe reduction of LAD perfusion pressure, but remained increasingly counterclockwise toward the apex. LV torsion remained unaffected by ischemia.  相似文献   

4.
The quantification of mechanical interventricular asynchrony (IVA) was investigated. In 12 dogs left bundle branch block (LBBB) was induced by radio frequency ablation. Left ventricular (LV) and right ventricular (RV) pressures were recorded before and after induction of LBBB and during LBBB + LV apex pacing at different atrioventricular (AV) delays. Four IVA measures were validated using computer simulations on experimentally obtained pressure signals. The most robust measure for IVA was the time delay between the upslope of the LV and RV pressure signals (DeltaT(up)), estimated by cross correlation. The induction of experimental LBBB decreased DeltaT(up) from -6.9 +/- 7.0 ms (RV before LV) to -33.9 +/- 7.6 ms (P < 0.05) in combination with a significant decrease of LV maximal first derivative of pressure development over time (dP/dt(max)). During LV apex pacing, DeltaT(up) increased with decreasing AV delay up to +20.9 +/- 14.6 ms (P < 0.05). Interventricular resynchronization (DeltaT(up) = 0 ms) significantly improved LV dP/dt(max) by 15.1 +/- 5.9%. QRS duration increased significantly after induction of LBBB but did not change during LV apex pacing. In conclusion, DeltaT(up) is a reliable measure of mechanical IVA, which adds valuable information concerning the nature of asynchronous activation of the ventricles.  相似文献   

5.
Cardiac electrical asynchrony occurs as a result of cardiac pacing or conduction disorders such as left bundle-branch block (LBBB). Electrically asynchronous activation causes myocardial contraction heterogeneity that can be detrimental for cardiac function. Computational models provide a tool for understanding pathological consequences of dyssynchronous contraction. Simulations of mechanical dyssynchrony within the heart are typically performed using the finite element method, whose computational intensity may present an obstacle to clinical deployment of patient-specific models. We present an alternative based on the CircAdapt lumped-parameter model of the heart and circulatory system, called the MultiPatch module. Cardiac walls are subdivided into an arbitrary number of patches of homogeneous tissue. Tissue properties and activation time can differ between patches. All patches within a wall share a common wall tension and curvature. Consequently, spatial location within the wall is not required to calculate deformation in a patch. We test the hypothesis that activation time is more important than tissue location for determining mechanical deformation in asynchronous hearts. We perform simulations representing an experimental study of myocardial deformation induced by ventricular pacing, and a patient with LBBB and heart failure using endocardial recordings of electrical activation, wall volumes, and end-diastolic volumes. Direct comparison between simulated and experimental strain patterns shows both qualitative and quantitative agreement between model fibre strain and experimental circumferential strain in terms of shortening and rebound stretch during ejection. Local myofibre strain in the patient simulation shows qualitative agreement with circumferential strain patterns observed in the patient using tagged MRI. We conclude that the MultiPatch module produces realistic regional deformation patterns in the asynchronous heart and that activation time is more important than tissue location within a wall for determining myocardial deformation. The CircAdapt model is therefore capable of fast and realistic simulations of dyssynchronous myocardial deformation embedded within the closed-loop cardiovascular system.  相似文献   

6.
This study explores the use of interventricular asynchrony (interVA) for optimizing cardiac resynchronization therapy (CRT), an idea emerging from a simple pathway model of conduction in the ventricles. Measurements were performed in six dogs with chronic left bundle branch block (LBBB) and in 29 patients of the Pacing Therapies for Congestive Heart Failure (PATH-CHF)-I study. In the dogs, intraventricular asynchrony (intraVA) was determined using left ventricular (LV) endocardial activation maps. In dogs and patients, the maximum rate of rise of LV pressure (LV dP/dt(max)) and the pulse pressure (PP) and interVA [time delay between upslope of LV and right ventricular (RV) pressure curves] were measured during LV, RV, and biventricular (BiV) pacing with various atrioventricular (AV) delays. Measurements in the canine hearts supported the pathway model in that optimal resynchronization occurred at approximately 50% reduction of intraVA and at an interVA value halfway that during LBBB and LV pacing. In patients with significant hemodynamic response during pacing (n = 22), intrinsic interVA and interVA at peak improvement (interVA(p)) varied widely between patients (from -83 to -15 ms and from -42 to +31 ms, respectively). However, the model predicted individual interVA(p) accurately (SD of +/-6 ms and +/-12 ms for LV dP/dt(max) and PP, respectively). At equal interVA, LV and BiV pacing produced equal hemodynamic response, but in 11 of 22 responders, BiV pacing reduced interVA insufficiently to reach the maximum hemodynamic response. LV pacing at short AV delay proved to result in better hemodynamics than predicted by the model, indicating that additional factors determine hemodynamics during LV preexcitation. Guided by a simple pathway model, interVA measurements accurately predict optimal hemodynamic performance in individual CRT patients.  相似文献   

7.
Positive responses to left (LV) and biventricular (BV) stimulation observed in heart failure patients with left bundle branch block (LBBB) suggest a possible mechanism of LV resynchronization. An anesthetized canine LBBB model was developed using radio frequency ablation. Before and after ablation, LV pressure derivative over time (dP/dt) and aortic pulse pressure (PP) were assessed during normal sinus rhythm with right ventricle (RV), LV, or BV stimulation combined with four atrioventricular delays in six dogs. In three more dogs, M-mode echocardiograms of septal and LV posterior wall motion were obtained before and after LBBB and during LV stimulation. LBBB caused QRS widening and hemodynamics deterioration. Before ablation, stimulation alone worsened LV dP/dt and PP. After ablation, LV and BV stimulation maximally increased LV dP/dt by 16% and PP by 7% (P < 0.001), whereas little improvement was observed during RV stimulation. M-mode echocardiogram showed that LBBB resulted in a paradoxical septal wall motion that was corrected by LV stimulation. In conclusion, LV and BV stimulation improved cardiac function in a canine LBBB model via resynchronization of LV excitation and contraction.  相似文献   

8.
Recent developments in the field of echocardiography have allowed the cardiologist to objectively quantify regional and global myocardial function. Regional deformation (strain) and deformation rate (strain-rate) can be calculated non-invasively in both the left and right ventricle, providing information on regional (dys-)function in a variety of clinical settings. Although this promising novel technique is increasingly applied in clinical and preclinical research, knowledge about the principles, limitations and technical issues of this technique is mandatory for reliable results and for implementation both in the clinical as well as the scientific field. In this article, we aim to explain the fundamental concepts and potential clinical applicability of strain and strain-rate for both tissue Doppler imaging (TDI) derived and speckle tracking (2D-strain) derived deformation imaging. In addition, a step-by-step approach to image acquisition and post processing is proposed. Finally, clinical examples of deformation imaging in hypertrophic cardiomyopathy (HCM), cardiac resynchronization therapy (CRT) and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) are presented.  相似文献   

9.
The aim of this study was to examine the efficiency of adenovirus-mediated overexpression of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1a) gene in a realistic model based on percutaneous intracoronary delivery and on noninvasive functional monitoring. Catheter-based selective coronary delivery of saline or adenoviruses (Ad.CMV.SERCA1a or Ad.CMV.lacZ, 10(10) plaque-forming units) was performed in the circumflex artery of rabbits. Effects were assessed and compared by using serial Doppler echocardiography, hemodynamics, and measurements of SERCA protein and Ca(2+) uptake activity. On day 3, a 21% increase in SERCA proteins and a 37% increase in the maximal rate of Ca(2+) uptake were observed in the transfected left ventricular (LV) walls of Ad.CMV.SERCA1a rabbits. Baseline hemodynamics and conventional echographic measurements of global LV function were poorly affected. In contrast, tissue Doppler imaging (TDI) was able to assess a strong increase in the baseline function of transfected LV walls, as assessed with maximal wall velocities (+32% and +43%, respectively) and strain rates (+18% and +30%, respectively). TDI parameters were closely related to the maximal rate of Ca(2+) uptake (r(2) = 0.68 for the systolic strain rate). Serial TDI analysis during follow-up showed that the effects lasted for 7 days and were no longer detectable 15 days after adenoviruses injection. In conclusion, LV function can be increased by adenovirus-mediated overexpression of SERCA in a clinically relevant model, and TDI provides an accurate and noninvasive tool for monitoring effects on global as well as regional myocardial function.  相似文献   

10.
The prevalence of severe obesity is increasing worldwide in adolescents. Whether it is associated with functional myocardial abnormalities remains largely unknown, potentially because of its frequent association with other cardiovascular risk factors and also use of insensitive techniques to detect subclinical changes in myocardial function. We used 2D vector velocity imaging (VVI) to investigate early changes in left ventricular (LV) myocardial function in youths with isolated severe obesity. Thirty‐seven asymptomatic severely obese adolescents free of diabetes and hypertension, and 24 lean controls were enrolled. LV longitudinal, basal, and apical circumferential strain, strain rate (SR), rotations, and LV twist were measured. Obese adolescents had greater LV mass and reduced systolic and early diastolic tissue Doppler imaging (TDI) velocities than lean counterparts. L strain (?24%) and systolic and early diastolic SR were also diminished in the obese, whereas no intergroup differences existed for the circumferential deformation indexes. LV twist was more pronounced in the obese (+1.7°, P < 0.01) on account of greater apical rotation only (4.1 ± 0.9 vs. 5.2 ± 1.2°, P < 0.01), potentially compensating for the loss in longitudinal function. Systolic—diastolic coupling, an important component of early filling and diastolic function, was maintained with severe obesity. No intergroup differences were reported regarding time to peak values for all VVI indexes highlighting that dynamics of strain and twist/untwist along the cardiac cycle was preserved with severe obesity. Isolated severe obesity in adolescents, at a preclinical stage, is associated with changes in myocardial deformation and torsional mechanics that could be in part related to alterations in relaxation and contractility properties of subendocardial fibers.  相似文献   

11.

Background

Echocardiography is widely used in the management of patients with cardiogenic shock (CS). Left ventricular ejection fraction (EF) has been shown to be an independent predictor of survival in CS. Tissue Doppler Imaging (TDI) is a sensitive echocardiographic technique that allows for the early quantitative assessment of regional left ventricular dysfunction. TDI derived indices, including systolic velocity (S'), early (E') and late (A') diastolic velocities of the lateral mitral annulus, are reduced in heart failure patients (EF < 30%) and portend a poor prognosis. In CS patients, the application of TDI prior to revascularization remains unknown.

Objective

To characterize TDI derived indices in CS patients as compared to patients with chronic CHF.

Methods

Between 2006 and 2007, 100 patients were retrospectively evaluated who underwent echocardiography for assessment of LV systolic function. This population included: Group I) 50 patients (30 males, 57 ± 13 years) with chronic CHF as controls; and Group II) 50 patients (29 males, 58 ± 10 years) with CS. Spectral Doppler indices including peak early (E) and late (A) transmitral velocities, E/A ratio, and E-wave deceleration time were determined. Tissue Doppler indices including S', E' and A' velocities of the lateral annulus were measured.

Results

Of the entire cohort, the mean LVEF was 25 ± 5%. Cardiogenic shock patients demonstrated significantly lower lateral S', E' and a higher E/E' ratio (p < 0.01), as compared to CHF patients. The in-hospital mortality in the CHF cohort was 5% as compared to the CS group with an in hospital mortality of 40%. In the subset of CS patients (n = 30) who survived, the mean S' at presentation was higher as compared to those patients who died in hospital (3.5 ± 0.5 vs. 1.8 ± 0.5 cm/s).

Conclusion

Despite similar reduction in LV systolic function, CS patients have reduced myocardial velocities and higher filling pressures using TDI, as compared to CHF patients. Whether TDI could be a reliable tool to determine CS patients with the best chance of recovery following revascularization is yet to be determined.  相似文献   

12.
The purpose of the study was to evaluate the dynamics of diastolic and systolic function from rest to maximal exercise using conventional echocardiography and tissue Doppler imaging (TDI) in obese prepubertal boys compared to age‐matched lean controls. Eighteen obese (10 with first degree obesity and 8 with second degree obesity according to French curves, BMI: 23.3 ± 1.8 and 29.0 ± 2.0 kg/m2, respectively) and 17 lean controls (BMI = 17.6 ± 0.6 kg/m2, P < 0.001), aged 10–12 years were recruited. After resting echocardiography, all children performed a maximal exercise test. Regional diastolic and systolic myocardial velocities were acquired at rest and each workload. Stroke volume and cardiac output were calculated. At rest, obese boys had greater left ventricular (LV) diameters and LV mass. Boys in the first degree group showed no diastolic or systolic dysfunction, whereas boys with second degree obesity showed subtle diastolic dysfunction. During exercise, both obese groups showed greater stroke volume and cardiac output. First degree obese boys exhibited greater systolic and diastolic tissue Doppler velocities than controls, whereas second degree obese boys had lower diastolic tissue velocities irrespective of exercise intensity and lower fractional shortening at high exercise intensities than controls. In conclusion, no impairment in diastolic or systolic function is noticed in prepubertal boys with first degree of obesity. Enhanced regional myocardial function response to exercise was also demonstrated in this population, suggesting adaptive compensatory cardiac changes in mild obesity. However, when obesity becomes more severe, impaired global and regional cardiac function at rest and during exercise can be observed.  相似文献   

13.
Traditionally, global and longitudinal (i.e., regional) left ventricular (LV) diastolic function (DF) assessment has utilized features of transmitral Doppler E and A waves or Doppler tissue imaging (DTI)-derived mitral annular E' and A' waves, respectively. Quantitation of regional DF has included M-mode echocardiography-based approaches and strain and strain rate imaging (in selected imaging planes), while analysis of mitral annular "oscillations" has recently provided a new window into longitudinal (long-axis) function. The remaining major spatial degree of kinematic freedom during diastole, radial (short-axis) motion, has not been fully characterized, nor has it been exploited for its potential to provide radial LV stiffness (k'(rad)) and relaxation/damping (c'(rad)) indexes. Prior characterization of regional (longitudinal) DF used only annular E'- and A'-wave peak velocities or, alternatively, myocardial strain and strain rate. By kinematically modeling short-axis tissue motion as damped radial oscillation, we present a novel method of estimating k'(rad) and c'(rad) during early filling. As required by the (near) constant-volume property of the heart and tissue/blood incompressibility, in subjects (n = 10) with normal DF, we show that oscillation duration-determined longitudinal (k'(long) and c'(long)) and radial (k'(long) and c'(rad)) parameters are highly correlated (R = 0.69 and 0.92, respectively). Selected examples of diabetic and LV hypertrophic subjects yield radial (k'(long) and c'(rad)) parameters that differ substantially from controls. Results underscore the utility of the incompressibility-based causal relation between DTI-determined mitral annular long-axis (longitudinal mode) and short-axis (radial mode) oscillations in healthy subjects. Selected pathological examples provide mechanistic insight and illustrate the value and potential role of regional (longitudinal and radial) DF indexes in fully characterizing normal vs. impaired DF states.  相似文献   

14.
The goal of the present study was to assess the effects of left ventricular (LV) pacing sites (apex vs. free wall) on radial synchrony and global LV performance in a canine model of contraction dyssynchrony. Ultrasound tissue Doppler imaging and hemodynamic (LV pressure-volume) data were collected in seven anesthetized, opened-chest dogs. Right atrial (RA) pacing served as the control, and contraction dyssynchrony was created by simultaneous RA and right ventricular (RV) pacing to induce a left bundle-branch block-like contraction pattern. Cardiac resynchronization therapy (CRT) was implemented by adding simultaneous LV pacing to the RV pacing mode at either the LV apex (CRTa) or free wall (CRTf). A new index of synchrony was developed via pair-wise cross-correlation analysis of tissue Doppler radial strain from six midmyocardial cross-sectional regions, with a value of 15 indicating perfect synchrony. Compared with RA pacing, RV pacing significantly decreased radial synchrony (11.1 +/- 0.8 vs. 4.8 +/- 1.2, P < 0.01) and global LV performance (cardiac output: 2.0 +/- 0.3 vs. 1.4 +/- 0.1 l/min and stroke work: 137 +/- 22 vs. 60 +/- 14 mJ, P < 0.05). Although both CRTa and CRTf significantly improved radial synchrony, only CRTa markedly improved global function (cardiac output: 2.1 +/- 0.2 l/min and stroke work: 113 +/- 13 mJ, P < 0.01 vs. RV pacing). Furthermore, CRTa decreased LV end-systolic volume compared with RV pacing without any change in LV end-systolic pressure, indicating an augmented global LV contractile state. Thus, LV apical pacing appears to be a superior pacing site in the context of CRT. The dissociation between changes in synchrony and global LV performance with CRTf suggests that regional analysis from a single plane may not be sufficient to adequately characterize contraction synchrony.  相似文献   

15.
During left bundle branch block (LBBB), electromechanical delay (EMD), defined as time from regional electrical activation (REA) to onset shortening, is prolonged in the late-activated left ventricular lateral wall compared with the septum. This leads to greater mechanical relative to electrical dyssynchrony. The aim of this study was to determine the mechanism of the prolonged EMD. We investigated this phenomenon in an experimental LBBB dog model (n = 7), in patients (n = 9) with biventricular pacing devices, in an in vitro papillary muscle study (n = 6), and a mathematical simulation model. Pressures, myocardial deformation, and REA were assessed. In the dogs, there was a greater mechanical than electrical delay (82 ± 12 vs. 54 ± 8 ms, P = 0.002) due to prolonged EMD in the lateral wall vs. septum (39 ± 8 vs.11 ± 9 ms, P = 0.002). The prolonged EMD in later activated myocardium could not be explained by increased excitation-contraction coupling time or increased pressure at the time of REA but was strongly related to dP/dt at the time of REA (r = 0.88). Results in humans were consistent with experimental findings. The papillary muscle study and mathematical model showed that EMD was prolonged at higher dP/dt because it took longer for the segment to generate active force at a rate superior to the load rise, which is a requirement for shortening. We conclude that, during LBBB, prolonged EMD in late-activated myocardium is caused by a higher dP/dt at the time of activation, resulting in aggravated mechanical relative to electrical dyssynchrony. These findings suggest that LV contractility may modify mechanical dyssynchrony.  相似文献   

16.
A patient-specific right/left ventricle and patch (RV/LV/patch) combination model with fluid-structure interactions (FSIs) was introduced to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. Cardiac magnetic resonance (CMR) imaging studies were performed to acquire ventricle geometry, flow velocity, and flow rate for healthy volunteers and patients needing RV remodeling and PVR before and after scheduled surgeries. CMR-based RV/LV/patch FSI models were constructed to perform mechanical analysis and assess RV cardiac functions. Both pre- and postoperation CMR data were used to adjust and validate the model so that predicted RV volumes reached good agreement with CMR measurements (error <3%). Two RV/LV/patch models were made based on preoperation data to evaluate and compare two PVR surgical procedures: (i) conventional patch with little or no scar tissue trimming, and (ii) small patch with aggressive scar trimming and RV volume reduction. Our modeling results indicated that (a) patient-specific CMR-based computational modeling can provide accurate assessment of RV cardiac functions, and (b) PVR with a smaller patch and more aggressive scar removal led to reduced stress/strain conditions in the patch area and may lead to improved recovery of RV functions. More patient studies are needed to validate our findings.  相似文献   

17.
Ischemia-reperfusion (IR) was surgically performed in murine hearts which were then subjected to repeated imaging to monitor temporal changes in functional parameters of key clinical significance. Two-dimensional movies were acquired at high frame rate (8 kHz) and were utilized to estimate high-quality myocardial strain. Two-dimensional elastograms (strain images), as well as strain profiles, were visualized. Results were powerful in quantitatively assessing IR-induced changes in cardiac events including left-ventricular (LV) contraction, LV relaxation and isovolumetric phases of both pre-IR and post-IR beating hearts in intact mice. In addition, compromised sector-wise wall motion and anatomical deformation in the infarcted myocardium were visualized. The elastograms were uniquely able to provide information on the following parameters in addition to standard physiological indices that are known to be affected by myocardial infarction in the mouse: internal diameters of mitral valve orifice and aorta, effective regurgitant orifice, myocardial strain (circumferential as well as radial), turbulence in blood flow pattern as revealed by the color Doppler movies and velocity profiles, asynchrony in LV sector, and changes in the length and direction of vectors demonstrating slower and asymmetrical wall movement. This work emphasizes on the visual demonstration of how such analyses are performed.  相似文献   

18.
Mathematical models provide a suitable platform to test hypotheses on the relation between local mechanical stimuli and responses to cardiac structure and geometry. In the present model study, we tested hypothesized mechanical stimuli and responses in cardiac adaptation to mechanical load on their ability to estimate a realistic myocardial structure of the normal and situs inversus totalis (SIT) left ventricle (LV). In a cylindrical model of the LV, 1) mass was adapted in response to myofiber strain at the beginning of ejection and to global contractility (average systolic pressure), 2) cavity volume was adapted in response to fiber strain during ejection, and 3) myofiber orientations were adapted in response to myofiber strain during ejection and local misalignment between neighboring tissue parts. The model was able to generate a realistic normal LV geometry and structure. In addition, the model was also able to simulate the instigating situation in the rare SIT LV with opposite torsion and transmural courses in myofiber direction between the apex and base [Delhaas et al. (6)]. These results substantiate the importance of mechanical load in the formation and maintenance of cardiac structure and geometry. Furthermore, in the model, adapted myocardial architecture was found to be insensitive to fiber misalignment in the transmural direction, i.e., myofiber strain during ejection was sufficient to generate a realistic transmural variation in myofiber orientation. In addition, the model estimates that, despite differences in structure, global pump work and the mass of the normal and SIT LV are similar.  相似文献   

19.
AimTo evaluate whether left bundle branch block with residual conduction (rLBBB) is associated with worse outcomes after cardiac resynchronisation therapy (CRT).MethodsAll consecutive CRT implants at our institution between 2006 and 2013 were identified from our local device registry. Pre- and post-implant patient specific data were extracted from clinical records.ResultsA total of 690 CRT implants were identified during the study period. Prior to CRT, 52.2% of patients had true left bundle branch block (LBBB), 19.1% a pacing-induced LBBB (pLBBB), 11.2% a rLBBB, 0.8% a right bundle branch block (RBBB), and 16.5% had a nonspecific intraventricular conduction delay (IVCD) electrocardiogram pattern. Mean age at implant was 67.5 years (standard deviation [SD] = 10.6), mean left ventricular ejection fraction (LV EF) was 25.7% (SD = 7.9%), and mean QRS duration was 158.4 ms (SD = 32 ms). After CRT, QRS duration was significantly reduced in the LBBB (p < 0.001), pLBBB (p < 0.001), rLBBB (p < 0.001), RBBB (p = 0.04), and IVCD groups (p = 0.03). LV EF significantly improved in the LBBB (p < 0.001), rLBBB (p = 0.002), and pLBBB (p < 0.001) groups, but the RBBB and IVCD groups showed no improvement. There was no significant difference in mortality between the LBBB and rLBBB groups. LV EF post-CRT, chronic kidney disease, hyperkalaemia, hypernatremia, and age at implant were significant predictors of mortality.ConclusionCRT in patients with rLBBB results in improved LV EF and similar mortality rates to CRT patients with complete LBBB. Predictors of mortality post-CRT include post-CRT LV EF, presence of CKD, hyperkalaemia, hypernatremia, and older age at implant.  相似文献   

20.
Fibroblast growth factor-2 (FGF-2) is implicated in cardioprotection. However, previously we found that chronic elevation in cardiac FGF-2 levels in transgenic mice was associated with exaggerated, cyclosporine A-preventable, cellular infiltration after isoproterenol-induced injury, suggestive of an adverse outcome, although this was not examined with functional studies. We have now used highly sensitive tissue Doppler imaging (TDI) to evaluate cardiac functional parameters after isoproterenol administration in transgenic mice overexpressing the 18 kDa FGF-2 in the heart in vivo. Cardiac function was assessed in conscious FGF-2 transgenic and non-transgenic mice at 24 h as well as 2 and 4 weeks after isoproterenol administration, and in the absence or presence of either cyclosporine A or anti-CD3ε treatments. Isoproterenol decreased left ventricular endocardial velocity and strain rate by 47-51% at 24 h in non-transgenic mice, but to a significantly lesser extent (by 24%) in transgenic mice. While additional decreases were seen in non-transgenic mice at 2 weeks, there was no further reduction in ventricular endocardial velocity or strain rate up to 4 weeks post-treatment in FGF-2 transgenic mice. Functional improvement at 2 and 4 weeks post-isoproterenol was reduced significantly by treatment with cyclosporine A but not anti-CD3ε; the latter targets T lymphocyte activation more specifically. TDI values in the presence of chronic FGF-2 overexpression are prognostic of an improved cardiac outcome and protection from isoproterenol induced cardiac dysfunction in vivo. Our data also suggest that cyclosporine A-sensitive infiltrating cell population(s) may contribute to the sustained beneficial effect of FGF-2 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号