首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A recombinant chymosin was secreted at high levels using fusion genes with A. oryzae glucoamylase gene (glaA) and a wheat bran solid-state culture system. Two portions of the A. oryzae glucoamylase, one with almost the entire glucoamylase (GA1–603) lacking 9 amino acids at the carboxyl terminal, and the other (GA1–511) lacking the starch binding-domain, were fused in frame with prochymosin cDNA. Western blot analysis indicated that the mature chymosin was released from the secreted fusion protein by autocatalytic processing. The transformant harboring the GA1-511-prochymosin construct showed about 5-fold chymosin production of the transformant in which the chymosin gene was directly expressed under the control of the glaA promoter in submerged culture. Moreover, wheat bran solid-state culture gave about 500-fold higher yield of the chymosin (approximately 150 mg/kg wheat bran) compared with the submerged culture.  相似文献   

2.
3.
4.
《Gene》1998,207(2):127-134
The DNA (glaB) and a cDNA-encoding glucoamylase produced in solid-state culture of Aspergillus oryzae were cloned using oligodeoxyribonucleotide probes derived from internal amino acid sequences of the enzyme. Comparison of the nucleotide sequences of a genomic DNA fragment with its cDNA showed the glaB gene carried three exons interrupted by two introns and had an open reading frame encoding 493 aa residues. The 5′-flanking region had a TATA box at nt −87 from the start codon and two putative CAAT sequences at nt −276 and −288. The glaB gene shared 57% homology at the aa level with the glaA gene which was cloned previously from A. oryzae. Interestingly, the glucoamylase encoded by the glaB gene had no C-terminal domain such as that proposed to have starch binding activity in Aspergillus glucoamylases. Introduction of cDNA of the glaB gene to Saccharomyces cerevisiae caused the secretion of active glucoamylase to culture medium and introduction of the glaB gene to A. oryzae increased glucoamylase productivity in solid-state culture. Northern blot analysis showed the glaB gene was expressed in solid-state culture, but not in submerged culture.  相似文献   

5.
6.
7.
8.
9.
The phage insensitivity gene of lactococcal plasmid pCI829 which encodes an abortive infection defense mechanism (Abi) was inserted into the Lactococcus lactis subsp. lactis CH919 chromosome by utilizing the integration plasmid pCI194, which contains 4.2 kb of homology with the conjugative transposon Tn919. Chloramphenicol-resistant transformants expressed phage insensitivity to the prolate-headed phage c2 and the small isometric-headed phage 712, and hybridization analysis indicated that transformants contained pCI194 integrated in single copy. The level of phage insensitivity expressed by the transformants was reduced from that observed when the abi gene was located on a replicating plasmid, as determined by plaque assay and burst size analysis. Amplification of the integrated structure after growth in increased concentrations of chloramphenicol resulted in an increase in the expression of phage insensitivity. Hybridization analysis revealed that while pCI194 was stably maintained in an integrated state over 100 generations in the absence of selective pressure, the ability to express phage insensitivity was lost. Hybridization analysis also revealed that DNA flanking the abi gene contains homology to the CH919 chromosome.  相似文献   

10.
11.
12.
A full-length cDNA copy of the mRNA encoding calf chymosin (also known as rennin), a proteolytic enzyme with commercial importance in the manufacture of cheese, has been cloned in an f1 bacteriophage vector. The nucleotide sequence of the cDNA was determined, and translation of that sequence into amino acids predicts that the zymogen prochymosin is actually synthesized in vivo as preprochymosin with a 16 amino acid signal peptide. In vitro translation of total poly(A)-enriched RNA from the calf fourth stomach (abomasum) and immunoprecipitation with antichymosin antiserum revealed that a form of chymosin (probably preprochymosin judging from the Mr-value) is the major in vitro translation product of RNA from that tissue. Gel-transfer hybridization of restriction endonuclease-cleaved bovine chromosomal DNA with labeled cDNA probes indicated that the two known forms of chymosin, A and B, must be products of two different alleles of a single chymosin gene.  相似文献   

13.
14.
15.
16.
17.

Background

The moss Physcomitrella patens is an attractive model system for plant biology and functional genome analysis. It shares many biological features with higher plants but has the unique advantage of an efficient homologous recombination system for its nuclear DNA. This allows precise genetic manipulations and targeted knockouts to study gene function, an approach that due to the very low frequency of targeted recombination events is not routinely possible in any higher plant.

Results

As an important prerequisite for a large-scale gene/function correlation study in this plant, we are establishing a collection of Physcomitrella patens transformants with insertion mutations in most expressed genes. A low-redundancy moss cDNA library was mutagenised in E. coli using a derivative of the transposon Tn1000. The resulting gene-disruption library was then used to transform Physcomitrella. Homologous recombination of the mutagenised cDNA with genomic coding sequences is expected to target insertion events preferentially to expressed genes. An immediate phenotypic analysis of transformants is made possible by the predominance of the haploid gametophytic state in the life cycle of the moss. Among the first 16,203 transformants analysed so far, we observed 2636 plants ( = 16.2%) that differed from the wild-type in a variety of developmental, morphological and physiological characteristics.

Conclusions

The high proportion of phenotypic deviations and the wide range of abnormalities observed among the transformants suggests that mutagenesis by gene-disruption library transformation is a useful strategy to establish a highly diverse population of Physcomitrella patens mutants for functional genome analysis.  相似文献   

18.
19.
We aimed to establish an efficient RNA interference (RNAi) system in the industrially important filamentous fungus Trichoderma koningii using the DsRed protein as a reporter of the silencing process. To accomplish this, a DsRed expression cassette was transformed into T. koningii, and a recombinant strain that stably expressed DsRed was obtained. Next, a vector-directing expression of a DsRed hairpin RNA was constructed and transformed into the T. koningii recipient strain. Approximately 79 % of transformants displayed a decrease in DsRed fluorescence, and expression of DsRed in some transformants appeared to be fully suppressed. Characterization of randomly selected transformants by genomic DNA PCR analysis, real-time PCR quantification, and western blot confirmed downregulation of gene expression at different levels. The RNA silencing approach described here for T. koningii is effective, and the DsRed reporter gene provides a convenient tool for identification of silenced fungal transformants by their DsRed fluorescence compared to the control strain. The results of this study demonstrate the power of RNAi in T. koningii, which supports the use of this technology for strain development programs and functional genomics studies in industrial fungal strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号