首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyo JO  Nah J  Kim HJ  Lee HJ  Heo J  Lee H  Jung YK 《Autophagy》2008,4(3):315-321
Despite of the increasing evidence that oxidative stress may induce non-apoptotic cell death or autophagic cell death, the mechanism of this process is unclear. Here, we report a role and a down-stream molecular event of Atg5 during oxidative stress-induced cell death. Compared to wild type (WT) cells, Atg5-deficient mouse embryo fibroblasts (Atg5-/- MEFs) and Atg5 knockdown HT22 neuronal cells were more resistant to cell death induced by H2O2. On the contrary, Atg5-/- MEFs were as sensitive to tumor necrosis factor (TNF)-alpha and cycloheximide as WT cells, and were more sensitive to cell death triggered by amino acid-deprivation than WT MEFs. Treatment with H2O2 induced the recruitment of a GFP-LC3 fusion protein and conversion of LC3 I to LC3 II, correlated with the extent of autophagosome formation in WT cells, but much less in Atg5-deficient cells. Among stress kinases, ERK1/2 was markedly activated in Atg5-/- MEFs and Atg5 knockdown HT22 and SH-SY5Y neuronal cells. The inhibition of ERK1/2 by MEK1 inhibitor (PD98059) or dominant negative ERK2 enhanced the susceptibility of Atg5-/- MEFs to H2O2-induced cell death. Further, reconstitution of Atg5 sensitized Atg5-/- MEFs to H2O2 and suppressed the activation of ERK1/2. These results suggest that the inhibitory effect of Atg5 deficiency on cell death is attributable by the compensatory activation of ERK1/2 in Atg5-/- MEFs during oxidative stress-induced cell death.  相似文献   

2.
Apigenin, a dietary bioflavonoid with anticarcinogenic properties, was highly cytotoxic for HeLa cells (incubated with 0.5% FBS). This effect was accompanied with a marked increase in ERK1/2 but not MEK1/2 phosphorylation. The cytotoxic effects of apigenin were attenuated by the stimulation of these cells with 10% FBS, which provoked an increase in the phosphorylation levels of MEK1/2 and ERK1/2. The steps in the ERK1/2 pathway relevant to the cytotoxic effects of apigenin, as well as the contribution of other signaling pathways, were investigated. The activation of the pathway by transfection with the constitutively active Ras mutant (RasV12) conferred protection to serum-starved HeLa cells against apigenin, whereas the constitutively active MEK(E) mutant did not. MEK inhibitors (PD098059 or U0126) blocked ERK1/2 phosphorylation induced by apigenin and conferred partial protection against this flavonoid. The effects of apigenin did not involve p38-MAPK or JNK1/2, and were not simply due to inhibition of PI3kinase or protein kinase CK2. These data suggest that the deregulation of the ERK1/2 pathway, due to the potentiation of ERK1/2 phosphorylation without increasing MEK1/2 phosphorylation, is involved in apigenin-induced HeLa cell death.  相似文献   

3.
Accumulation of reactive oxygen species during aging leads to programmed cell death (PCD) in many cell types but has not been explored in mammalian fertilized eggs, in which mitochondria are "immature," in contrast to "mature" mitochondria in somatic cells. We characterized PCD in mouse zygotes induced by either intensive (1 mM for 1.5 h) or mild (200 microM for 15 min) hydrogen peroxide (H(2)O(2)) treatment. Shortly after intensive treatment, zygotes displayed PCD, typified by cell shrinkage, cytochrome c release from mitochondria, and caspase activation, then terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining in condensed pronuclei. On the other hand, after mild treatment, zygotes arrested developmentally and showed neither cytochrome c release nor caspase activation over 48 h; until 72 h, 46% zygotes exhibited TUNEL staining, and 88% of zygotes lost plasma membrane integrity. Interestingly, mild oxidative treatment induced a decline in mitochondrial membrane potential and disruption of the mitochondrial matrix. Taken together, these results suggest that oxidative stress caused by H(2)O(2) induces PCD in mouse zygotes and that mitochondria are involved in the early phase of oxidative stress-induced PCD. Furthermore, mitochondrial malfunction also may contribute to cell cycle arrest, followed by cell death, triggered by mild oxidative stress.  相似文献   

4.
5.
P5, one of the protein disulphide isomerase (PDI) family members, catalyses disulphide bond formation in proteins and exhibits molecular chaperone and calcium binding activities in vitro, whereas its physiological significance remains controversial. Recently, we have reported that P5 localizes not only in the ER but also in mitochondria, although it remains unclear so far about its physiological significance(s) of its dual localization. Here we report that H(2)O(2)- or rotenone-induced cell death is suppressed in MTS-P5 cells, which stably express P5 in mitochondria. H(2)O(2)-induced cell death in Saos-2 cells occurred, in large part, through caspase-independent and poly(ADP-ribose) polymerase (PARP)-dependent manner. In MTS-P5 cells challenged with H(2)O(2) treatment, PARP was still activated, whereas release of cytochrome c or apoptosis-inducing factor and intramitochondrial superoxide generation were suppressed. We also found that mitochondrial P5 was in close contact with citrate synthase and maintained large parts of its activity under H(2)O(2) exposure. These results suggest that mitochondrial P5 may upregulate tricarboxylic acid cycle and possibly, other intramitochondrial metabolism.  相似文献   

6.
Patients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity.In this study, we obtained iPSCs derived from a patient carrying a mutated LAMP2 gene that is associated with Danon disease. By differentiating such LAMP2-deficient iPSCs into cerebral cortical neurons and with the aid of various biochemical assays, we demonstrated that the LAMP2-deficient neurons are more susceptible to mild oxidative stress-induced injury.The data from MTT assay and apoptotic analysis demonstrated that there was no notable difference in cellular viability between the normal and LAMP2-deficient neurons under non-stressed condition. When exposed to mild oxidative stress (10 μM H2O2), the LAMP2-deficient neurons exhibited a significant increase in apoptosis. Surprisingly, we did not observe any aberrant accumulation of autophagic materials in the LAMP2-deficient neurons under such stress condition.Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury.  相似文献   

7.
Parkinson's disease (PD) is a well known neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compact (SN). Although the exact mechanism remains unclear, oxidative stress plays a critical role in the pathogenesis of PD. DJ-1 is a multifunctional protein, a potent antioxidant and chaperone, the loss of function of which is linked to the autosomal recessive early onset of PD. Therefore, we investigated the protective effects of DJ-1 protein against SH-SY5Y cells and in a PD mouse model using a cell permeable Tat-DJ-1 protein. Tat-DJ-1 protein rapidly transduced into the cells and showed a protective effect on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death by reducing the reactive oxygen species (ROS). In addition, we found that Tat-DJ-1 protein protects against dopaminergic neuronal cell death in 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP)-induced PD mouse models. These results suggest that Tat-DJ-1 protein provides a potential therapeutic strategy for against ROS related human diseases including PD.  相似文献   

8.
In-frame mutations in nuclear lamin A/C lead to a multitude of tissue-specific degenerative diseases known as the ‘laminopathies’. Previous studies have demonstrated that lamin A/C-null mouse fibroblasts have defects in cell polarisation, suggesting a role for lamin A/C in nucleo-cytoskeletal-cell surface cross-talk. However, this has not been examined in patient fibroblasts expressing modified forms of lamin A/C. Here, we analysed skin fibroblasts from 3 patients with Emery–Dreifuss muscular dystrophy and from 1 with dilated cardiomyopathy. The emerin–lamin A/C interaction was impaired in each mutant cell line. Mutant cells exhibited enhanced cell proliferation, collagen-dependent adhesion, larger numbers of filopodia and smaller cell spread size, compared with control cells. Furthermore, cell migration, speed and polarization were elevated. Mutant cells also showed an enhanced ability to contract collagen gels at early time points, compared with control cells. Phosphotyrosine measurements during cell spreading indicated an initial temporal lag in ERK1/2 activation in our mutant cells, followed by hyper-activation of ERK1/2 at 2 h post cell attachment. Deregulated ERK1/2 activation is linked with cardiomyopathy, cell spreading and proliferation defects. We conclude that a functional emerin–lamin A/C complex is required for cell spreading and proliferation, possibly acting through ERK1/2 signalling.  相似文献   

9.
The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin‐related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 + sectors, ACD2 functions cell autonomously, implicating a pro‐death ACD2 substrate as being cell non‐autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light‐dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro‐death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.  相似文献   

10.
Zhou JH  Yu DV  Cheng J  Shapiro DJ 《Steroids》2007,72(11-12):765-777
Tamoxifen (Tam), and its active metabolite, 4-hydroxytamoxifen (OHT), compete with estrogens for binding to the estrogen receptor (ER). Tam and OHT can also induce ER-dependent apoptosis of cancer cells. 10-100nM OHT induces ER-dependent apoptosis in approximately 3 days. Using HeLaER6 cells, we examined the role of OHT activation of signal transduction pathways in OHT-ER-mediated apoptosis. OHT-ER activated the p38, JNK and ERK1/2 pathways. Inhibition of p38 activation with SB203580, or RNAi-knockdown of p38alpha, moderately reduced OHT-ER mediated cell death. A JNK inhibitor partly reduced cell death. Surprisingly, the MEK1/2 inhibitor, PD98059, completely blocked OHT-ER induced apoptosis. EGF, an ERK1/2 activator, enhanced OHT-induced apoptosis. OHT induced a delayed and persistent phosphorylation of ERK1/2 that persisted for >80h. Addition of PD98059 as late as 24h after OHT largely blocked OHT-ER mediated apoptosis. The antagonist, ICI 182,780, blocked both the long-term OHT-mediated phosphorylation of ERK1/2 and OHT-induced apoptosis. Our data suggests that the p38 and JNK pathways, which often play a central role in apoptosis, have only a limited role in OHT-ER-mediated cell death. Although rapid activation of the ERK1/2 pathway is often associated with cell growth, persistent activation of the ERK1/2 pathway is essential for OHT-ER induced cell death.  相似文献   

11.
We studied the effects of Pin1, a regulatory molecule of the oncosuppressor p53, on both cell cycle arrest and apoptosis by treating primary mouse embryonic fibroblasts (MEFs) with etoposide. Etoposide induced G1 arrest in both wild-type and Pin1 null (pin1(-/-)) MEFs, and G2/M arrest and apoptotic cell death in MEFs lacking either p53 only (p53(-/-)) or both Pin1 and p53 (pin1(-/-)p53(-/-)). Both pin1(-/-) and pin1(-/-)p53(-/-) MEFs were enhanced the release of cytochrome c from the mitochondria, which might induce apoptosis. In response to etoposide treatment, apoptotic cell death was displayed in pin1(-/-)p53(-/-) MEFs but not in pin1(-/-) MEFs. These results suggest that p53 retards growth and suppresses etoposide-induced apoptosis in pin1(-/-) MEFs.  相似文献   

12.
13.
14.
15.
Mu H  Wang X  Lin P  Yao Q  Chen C 《Biochimica et biophysica acta》2008,1783(9):1576-1584
Nitrotyrosine is a new biomarker of atherosclerosis and inflammation. The objective of this study was to determine the direct effects of free nitrotyrosine on human aortic smooth muscle cell (AoSMC) migration and molecular mechanisms. By a modified Boyden chamber assay, nitrotyrosine significantly increased AoSMC migration in a concentration-dependent manner. For example, nitrotyrosine at 300 nM increased AoSMC migration up to 152% compared with l-tyrosine-treated control cells (P<0.01). Cell wound healing assay confirmed this effect. Nitrotyrosine significantly increased the expression of some key cell migration-related molecules including PDGF receptor-B, matrix metalloproteinase 2 (MMP2) and integrins alphaV and beta3 at both mRNA and protein levels in AoSMC (P<0.01). In addition, nitrotyrosine increased reactive oxygen species (ROS) production in AoSMC by staining with fluorescent dye DCFHDA. Furthermore, nitrotyrosine induced transient phosphorylation of ERK2 by Bio-Plex luminex immunoassay and western blot analysis. AoSMC were able to uptake nitrotyrosine. Antioxidants including seleno-l-methionine and superoxide dismutase mimetic (MnTBAP) as well as ERK1/2 inhibitor PD98059 effectively blocked the promoting effect of nitrotyrosine on AoSMC migration and the mRNA expression of above cell migration-related molecules. Thus, nitrotyrosine directly increases AoSMC migration in vitro and the expression of migration-related molecules through overproduction of ROS and activation of ERK1/2 pathway. Nitrotyrosine may contribute to cardiovascular pathogenesis.  相似文献   

16.
Oxidative stress and reactive oxygen species (ROS) can elicit and modulate various physiological and pathological processes, including cell death. However, the mechanisms controlling ROS-induced cell death are largely unknown. Data from this study suggest that receptor-interacting protein (RIP) and tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2), two key effector molecules of TNF signaling, are essential for ROS-induced cell death. We found that RIP(-/-) or TRAF2(-/-) mouse embryonic fibroblasts (MEF) are resistant to ROS-induced cell death when compared to wild-type cells, and reconstitution of RIP and TRAF2 gene expression in their respective deficient MEF cells restored their sensitivity to H(2)O(2)-induced cell death. We also found that RIP and TRAF2 form a complex upon H(2)O(2) exposure, but without the participation of TNFR1. The colocalization of RIP with a membrane lipid raft marker revealed a possible role of lipid rafts in the transduction of cell death signal initiated by H(2)O(2). Finally, our results demonstrate that activation of c-Jun NH(2)-terminal kinase 1 is a critical event downstream of RIP and TRAF2 in mediating ROS-induced cell death. Therefore, our study uncovers a novel signaling pathway regulating oxidative stress-induced cell death.  相似文献   

17.
18.
19.
Protein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC isoforms (alpha, delta, epsilon, and zeta), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (alpha, delta, epsilon, and zeta) increased radiation-induced cell death in NIH3T3 cells and PKC epsilon overexpression was predominantly responsible. In addition, PKC epsilon overexpression increased ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKC epsilon (PKC epsilon -KR) blocked both PKC epsilon -mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKC epsilon construction augmented these phenomena. When the PKC epsilon overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-transfection with dominant negative Ras or Raf cDNA revealed that PKC epsilon -mediated ERK1/2 activation was Ras-Raf-dependent. In conclusion, PKC epsilon -mediated ERK1/2 activation was responsible for the radiation-induced cell death.  相似文献   

20.
Selected antiapoptotic genes were expressed in baker's yeast (Saccharomyces cerevisiae) to evaluate cytoprotective effects during oxidative stress. When exposed to treatments resulting in the generation of reactive oxygen species (ROS), including H(2)O(2), menadione, or heat shock, wild-type yeast died and exhibited apoptotic-like characteristics, consistent with previous studies. Yeast strains were generated expressing nematode ced-9, human bcl-2, or chicken bcl-xl genes. These transformants tolerated a range of oxidative stresses, did not display features associated with apoptosis, and remained viable under conditions that were lethal to wild-type yeast. Yeast strains expressing a mutant antiapoptotic gene (bcl-2 deltaalpha 5-6), known to be nonfunctional in mammalian cells, were unable to tolerate any of the ROS-generating insults. These data are the first report showing CED-9 has cytoprotective effects against oxidative stress, and add CED-9 to the list of Bcl-2 protein family members that modulate ROS-mediated programmed cell death. In addition, these data indicate that Bcl-2 family members protect wild-type yeast from physiological stresses. Taken together, these data support the concept of the broad evolutionary conservation and functional similarity of the apoptotic processes in eukaryotic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号