首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.  相似文献   

2.
Although the autophagy-related (ATG) conjugation systems are thought to be important for a late step of autophagosome formation, their precise function has been poorly understood because they are also required for localization of the most important autophagosomal marker LC3. In our recent study we found that, using the autophagosomal SNARE STX17 (syntaxin 17) as an alternative marker, autophagosome-like structures were generated in ATG conjugation system-deficient cells. Those structures could fuse with lysosomes but the degradation of the inner autophagosomal membrane was significantly delayed. We suggest that the ATG conjugation-dependent closure of autophagosomes causes the inner autophagosomal membrane to become sensitive to lysosomal degradation.  相似文献   

3.
Although largely overlooked relative to the process of phagophore formation, the mechanism through which autophagosomes fuse with lysosomes is a critical aspect of macroautophagy that is not fully understood. In particular, this step must be carefully regulated to prevent premature fusion of an incomplete autophagosome (that is, a phagophore) with a lysosome, because such an event would not allow access of the partially sequestered cargo to the lysosome lumen. The identification of the autophagosome-associated SNARE protein STX17 (syntaxin 17) provided some clue in the understanding of this process. STX17 is recruited specifically to mature autophagosomes, and functions in mediating autophagosome-lysosome fusion by forming a complex with the Qbc SNARE SNAP29 and the lysosomal R-SNARE VAMP8. Additionally, STX17 plays a role in the early events of autophagy by interacting with the phosphatidylinositol 3-kinase complex component ATG14. Upon autophagy induction STX17 is strictly required for ATG14 recruitment to the ER-mitochondria contact sites, a critical step for the assembly of the phagophore and therefore for autophagosome formation. In their recent paper, Diao and collaborators now show that the ATG14-STX17-SNAP29 interaction mediates autophagosome-lysosome tethering and fusion events, thus revealing a novel function of ATG14 in the later steps of the autophagy pathway.  相似文献   

4.
Membrane fusion is generally controlled by Rabs, soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs), and tethering complexes. Syntaxin 17 (STX17) was recently identified as the autophagosomal SNARE required for autophagosome–lysosome fusion in mammals and Drosophila. In this study, to better understand the mechanism of autophagosome–lysosome fusion, we searched for STX17-interacting proteins. Immunoprecipitation and mass spectrometry analysis identified vacuolar protein sorting 33A (VPS33A) and VPS16, which are components of the homotypic fusion and protein sorting (HOPS)–tethering complex. We further confirmed that all HOPS components were coprecipitated with STX17. Knockdown of VPS33A, VPS16, or VPS39 blocked autophagic flux and caused accumulation of STX17- and microtubule-associated protein light chain (LC3)–positive autophagosomes. The endocytic pathway was also affected by knockdown of VPS33A, as previously reported, but not by knockdown of STX17. By contrast, ultraviolet irradiation resistance–associated gene (UVRAG), a known HOPS-interacting protein, did not interact with the STX17–HOPS complex and may not be directly involved in autophagosome–lysosome fusion. Collectively these results suggest that, in addition to its well-established function in the endocytic pathway, HOPS promotes autophagosome–lysosome fusion through interaction with STX17.  相似文献   

5.
Mammalian autophagosomes possess the Qa-SNARE STX17 (syntaxin 17) for fusion with lysosomes. However, STX17 is not absolutely required for fusion because STX17 knockout cells partially retain autophagosome-lysosome fusion activity. We recently identified YKT6, an R-SNARE, as another autophagosomal SNARE protein that acts independently of STX17 in mammals. Here, we discuss the features and functions of autophagosomal SNARE proteins by comparing STX17 and YKT6.

Abbreviations: SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; STX17, syntaxin 17.  相似文献   


6.
Homotypic fusion and vacuole protein sorting (HOPS) is a tethering complex required for trafficking to the vacuole/lysosome in yeast. Specific interaction of HOPS with certain SNARE (soluble NSF attachment protein receptor) proteins ensures the fusion of appropriate vesicles. HOPS function is less well characterized in metazoans. We show that all six HOPS subunits (Vps11 [vacuolar protein sorting 11]/CG32350, Vps18/Dor, Vps16A, Vps33A/Car, Vps39/CG7146, and Vps41/Lt) are required for fusion of autophagosomes with lysosomes in Drosophila. Loss of these genes results in large-scale accumulation of autophagosomes and blocks autophagic degradation under basal, starvation-induced, and developmental conditions. We find that HOPS colocalizes and interacts with Syntaxin 17 (Syx17), the recently identified autophagosomal SNARE required for fusion in Drosophila and mammals, suggesting their association is critical during tethering and fusion of autophagosomes with lysosomes. HOPS, but not Syx17, is also required for endocytic down-regulation of Notch and Boss in developing eyes and for proper trafficking to lysosomes and eye pigment granules. We also show that the formation of autophagosomes and their fusion with lysosomes is largely unaffected in null mutants of Vps38/UVRAG (UV radiation resistance associated), a suggested binding partner of HOPS in mammals, while endocytic breakdown and lysosome biogenesis is perturbed. Our results establish the role of HOPS and its likely mechanism of action during autophagy in metazoans.  相似文献   

7.
Mechanisms of autophagosome biogenesis   总被引:1,自引:0,他引:1  
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen infection, neurodegenerative disorders, and myopathies. In this review, we will focus on recent studies in yeast and mammalian systems that have provided insights into two critical areas of autophagosome biogenesis - the source of the autophagosomal membranes, and the mechanisms regulating the fusion of the edges of the double-membraned phagophores to form autophagosomes.  相似文献   

8.
Moreau K  Ravikumar B  Renna M  Puri C  Rubinsztein DC 《Cell》2011,146(2):303-317
Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which can be derived from preautophagosomal structures coming from the plasma membrane and other sites like the endoplasmic reticulum and mitochondria. The mechanisms by which preautophagosomal structures elongate their membranes and mature toward fully formed autophagosomes still remain unknown. Here, we show that the maturation of the early Atg16L1 precursors requires homotypic fusion, which is essential for subsequent autophagosome formation. Atg16L1 precursor homotypic fusion depends on the SNARE protein VAMP7 together with partner SNAREs. Atg16L1 precursor homotypic fusion is a critical event in the early phases of autophagy that couples membrane acquisition and autophagosome biogenesis, as this step regulates the size of the vesicles, which in turn appears to influence their subsequent maturation into LC3-positive autophagosomes.  相似文献   

9.
Xu Liu 《Autophagy》2016,12(5):894-895
The macroautophagy (hereafter autophagy) process involves de novo formation of double-membrane autophagosomes; after sequestering cytoplasm these transient organelles fuse with the vacuole/lysosome. Genetic studies in yeasts have characterized more than 40 autophagy-related (Atg) proteins required for autophagy, and the majority of these proteins play roles in autophagosome formation. The fusion of autophagosomes with the vacuole is mediated by the Rab GTPase Ypt7, its guanine nucleotide exchange factor Mon1-Ccz1, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, these factors are not autophagosome-vacuole fusion specific. We recently showed that 2 autophagy scaffold proteins, the Atg17-Atg31-Atg29 complex and Atg11, regulate autophagosome-vacuole fusion by recruiting the vacuolar SNARE Vam7 to the phagophore assembly site (PAS), where an autophagosome forms in yeast.  相似文献   

10.
Macroautophagy/autophagy plays a critical role in immunity by directly degrading invading pathogens such as Group A Streptococcus (GAS), through a process that has been named xenophagy. We previously demonstrated that autophagic vacuoles directed against GAS, termed GAS-containing autophagosome-like vacuoles (GcAVs), use recycling endosomes (REs) as a membrane source. However, the precise molecular mechanism that facilitates the fusion between GcAVs and REs remains unclear. Here, we demonstrate that STX6 (syntaxin 6) is recruited to GcAVs and forms a complex with VTI1B and VAMP3 to regulate the GcAV-RE fusion that is required for xenophagy. STX6 targets the GcAV membrane through its tyrosine-based sorting motif and transmembrane domain, and localizes to TFRC (transferrin receptor)-positive punctate structures on GcAVs through its H2 SNARE domain. Knockdown and knockout experiments revealed that STX6 is required for the fusion between GcAVs and REs to promote clearance of intracellular GAS by autophagy. Moreover, VAMP3 and VTI1B interact with STX6 and localize on the TFRC-positive puncta on GcAVs, and are also involved in the RE-GcAV fusion. Furthermore, knockout of RABGEF1 impairs the RE-GcAV fusion and STX6-VAMP3 interaction. These findings demonstrate that RABGEF1 mediates RE fusion with GcAVs through the STX6-VAMP3-VTI1B complex, and reveal the SNARE dynamics involved in autophagosome formation in response to bacterial infection.  相似文献   

11.
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.  相似文献   

12.
《Autophagy》2013,9(10):1642-1646
Phagophores engulf cytoplasmic material and give rise to autophagosomes, double-membrane vesicles mediating cargo transport to lysosomes for degradation. The regulation of autophagosome fusion with endosomes and lysosomes during autophagy has remained poorly characterized. Two recent papers conclude that STX17/syntaxin 17 (Syx17 in Drosophila) has an evolutionarily conserved role in autophagosome fusion with endosomes and lysosomes, acting in one SNARE complex with SNAP29 (ubisnap in Drosophila) and the endosomal/lysosomal VAMP8 (CG1599/Vamp7 in Drosophila). Surprisingly, a third report suggests that STX17 might also contribute to proper phagophore assembly. Although several experiments presented in the two human cell culture studies yielded controversial results, the essential role of STX17 in autophagic flux is now firmly established, both in cultured cells and in an animal model. Based on these data, we propose that genetic inhibition of STX17/Syx17 may be a more specific tool in autophagic flux experiments than currently used drug treatments, which impair all lysosomal degradation routes and also inactivate MTOR (mechanistic target of rapamycin), a major negative regulator of autophagy. Finally, the neuronal dysfunction and locomotion defects observed in Syx17 mutant animals point to the possible contribution of defective autophagosome clearance to various human diseases.  相似文献   

13.
《Autophagy》2013,9(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

14.
Macroautophagy mediates recycling of intracellular material by a multistep pathway, ultimately leading to the fusion of closed double-membrane structures, called autophagosomes, with the lysosome. This event ensures the degradation of the autophagosome content by lysosomal proteases followed by the release of macromolecules by permeases and, thus, it accomplishes the purpose of macroautophagy (hereafter referred to as autophagy). Because fusion of unclosed autophagosomes (i.e., phagophores) with the lysosome would fail to degrade the autophagic cargo, this critical step has to be tightly controlled. Yet, until recently, little was known about the regulation of this event and the factors orchestrating it. A punctum in this issue highlights the recent paper by Noboru Mizushima and his collaborators that answered the question of how premature fusion of phagophores with the lysosome is prevented prior to completion of autophagosome closure.  相似文献   

15.
Autophagy is a catabolic process essential for cell homeostasis, at the core of which is the formation of double-membrane organelles called autophagosomes. Atg9 is the only known transmembrane protein required for autophagy and is proposed to deliver membrane to the preautophagosome structures and autophagosomes. We show here that mammalian Atg9 (mAtg9) is required for the formation of DFCP1-positive autophagosome precursors called phagophores. mAtg9 is recruited to phagophores independent of early autophagy proteins, such as ULK1 and WIPI2, but does not become a stable component of the autophagosome membrane. In fact, mAtg9-positive structures interact dynamically with phagophores and autophagosomes without being incorporated into them. The membrane compartment enriched in mAtg9 displays a unique sedimentation profile, which is unaltered upon starvation-induced autophagy. Correlative light electron microscopy reveals that mAtg9 is present on tubular-vesicular membranes emanating from vacuolar structures. We show that mAtg9 resides in a unique endosomal-like compartment and on endosomes, including recycling endosomes, where it interacts with the transferrin receptor. We propose that mAtg9 trafficking through multiple organelles, including recycling endosomes, is essential for the initiation and progression of autophagy; however, rather than acting as a structural component of the autophagosome, it is required for the expansion of the autophagosome precursor.  相似文献   

16.
The HOPS tethering complex facilitates autophagosome-lysosome fusion by binding to Syx17 (Syntaxin 17), the autophagosomal SNARE. Here we show that loss of the core HOPS complex subunit Vps16A enhances autophagosome formation and slows down Drosophila development. Mechanistically, Tor kinase is less active in Vps16A mutants likely due to impaired endocytic and biosynthetic transport to the lysosome, a site of its activation. Tor reactivation by overexpression of Rheb suppresses autophagosome formation and restores growth and developmental timing in these animals. Thus, Vps16A reduces autophagosome numbers both by indirectly restricting their formation rate and by directly promoting their clearance. In contrast, the loss of Syx17 blocks autophagic flux without affecting the induction step in Drosophila.  相似文献   

17.
Yeast studies identified the evolutionarily conserved core ATG genes responsible for autophagosome formation. However, the SNARE-dependent machinery involved in autophagosome fusion with the vacuole in yeast is not conserved. We recently reported that the SNARE complex consisting of Syx17 (Syntaxin 17), ubisnap (SNAP-29) and Vamp7 is required for the fusion of autophagosomes with late endosomes and lysosomes in Drosophila. Syx17 mutant flies are viable but exhibit neuronal dysfunction, locomotion defects and premature death. These data point to the critical role of autophagosome clearance in organismal homeodynamics.  相似文献   

18.
Autophagy is a degradative pathway in which cytosolic material is enwrapped within double membrane vesicles, so-called autophagosomes, and delivered to lytic organelles. SNARE (Soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are key to drive membrane fusion of the autophagosome and the lytic organelles, called lysosomes in higher eukaryotes or vacuoles in plants and yeast. Therefore, the identification of functional SNARE complexes is central for understanding fusion processes and their regulation. The SNARE proteins Syntaxin 17, SNAP29 and Vamp7/VAMP8 are responsible for the fusion of autophagosomes with lysosomes in higher eukaryotes. Recent studies reported that the R-SNARE Ykt6 is an additional SNARE protein involved in autophagosome-lytic organelle fusion in yeast, Drosophila, and mammals. These current findings point to an evolutionarily conserved role of Ykt6 in autophagosome-related fusion events. Here, we briefly summarize the principal mechanisms of autophagosome-lytic organelle fusion, with a special focus on Ykt6 to highlight some intrinsic features of this unusual SNARE protein.  相似文献   

19.
Ganley IG  Wong PM  Jiang X 《Autophagy》2011,7(11):1397-1399
A close relationship exists between autophagy and endocytosis with both sharing lysosomes as their common end-point. Autophagy even requires a functional endocytic pathway. The point at which the two pathways merge, i.e., fusion of autophagosomes and endosomes with lysosomes is poorly understood. Early work in yeast and more recent studies in mammalian cells suggested that conventional membrane trafficking pathways control the fusion of autophagosomes with lysosomes; Rab GTPases are required to recruit tethering proteins which in turn coordinate the SNARE family of proteins that directly drive membrane fusion. Some components required for endosomes to fuse with lysosomes are also shared by autophagosomes; both are thought to require the GTPase Rab7 and the homotypic fusion and vacuole protein sorting (HOPS) complex. Essentially, the autophagosome becomes endosome-like, allowing it to recruit the common fusion machinery to deliver its contents to the lysosome. This raises an interesting question of how the cell determines when the autophagosome is ready to fuse with the endocytic system and bestows upon it the properties required to recruit the fusion machinery. Our recent work has highlighted this conundrum and shown that autophagosome fusion with lysosomes has specific distinctions from the parallel endosomal-lysosomal pathway.  相似文献   

20.
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号