共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):623-636
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy. 相似文献
2.
The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation
下载免费PDF全文

Fragmentation of the mammalian Golgi apparatus during mitosis requires the phosphorylation of a specific subset of Golgi-associated proteins. We have used a biochemical approach to characterize these proteins and report here the identification of golgin-84 as a novel mitotic target. Using cryoelectron microscopy we could localize golgin-84 to the cis-Golgi network and found that it is enriched on tubules emanating from the lateral edges of, and often connecting, Golgi stacks. Golgin-84 binds to active rab1 but not cis-Golgi matrix proteins. Overexpression or depletion of golgin-84 results in fragmentation of the Golgi ribbon. Strikingly, the Golgi ribbon is converted into mini-stacks constituting only approximately 25% of the volume of a normal Golgi apparatus upon golgin-84 depletion. These mini-stacks are able to carry out protein transport, though with reduced efficiency compared with a normal Golgi apparatus. Our results suggest that golgin-84 plays a key role in the assembly and maintenance of the Golgi ribbon in mammalian cells. 相似文献
3.
《Autophagy》2013,9(5):861-863
Autophagosomes may derive membrane from diverse sources, including the plasma membrane, Golgi, endoplasmic reticulum and mitochondria. The plasma membrane contributes membrane to ATG12–ATG5-ATG16L1-positive phagophore precursor vesicles (LC3-negative) by both clathrin-dependent and -independent routes. We recently observed that ARF6 regulates autophagy and that this could be explained, at least in part, by its role in the generation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], which influences endocytic uptake of plasma membrane into autophagosome precursors. The subsequent maturation of these small phagophore precursors into phagophores (ATG12–ATG5-ATG16L1-positive and LC3-positive), is assisted by SNARE-mediated homotypic fusion that increase their size and enhance their ability to acquire LC3-II. It appears that a plasma membrane-derived pool of VAMP7 is a key mediator of these fusion events. Thus, events at the plasma membrane may regulate distinct steps in the biogenesis of phagophores. 相似文献
4.
The plasma membrane as a control center for autophagy 总被引:1,自引:0,他引:1
Autophagosomes may derive membrane from diverse sources, including the plasma membrane, Golgi, endoplasmic reticulum and mitochondria. The plasma membrane contributes membrane to ATG12-ATG5-ATG16L1-positive phagophore precursor vesicles (LC3-negative) by both clathrin-dependent and -independent routes. We recently observed that ARF6 regulates autophagy and that this could be explained, at least in part, by its role in the generation of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2], which influences endocytic uptake of plasma membrane into autophagosome precursors. The subsequent maturation of these small phagophore precursors into phagophores (ATG12-ATG5-ATG16L1-positive and LC3-positive), is assisted by SNARE-mediated homotypic fusion that increase their size and enhance their ability to acquire LC3-II. It appears that a plasma membrane-derived pool of VAMP7 is a key mediator of these fusion events. Thus, events at the plasma membrane may regulate distinct steps in the biogenesis of phagophores. 相似文献
5.
Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi 总被引:7,自引:0,他引:7
Wakana Y Koyama S Nakajima K Hatsuzawa K Nagahama M Tani K Hauri HP Melançon P Tagaya M 《Biochemical and biophysical research communications》2005,334(4):1198-1205
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway. 相似文献
6.
A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system.
下载免费PDF全文

During telophase, Golgi cisternae are regenerated and stacked from a heterogeneous population of tubulovesicular clusters. A cell-free system that reconstructs these events has revealed that cisternal regrowth requires interplay between soluble factors and soluble N-ethylmaleimide (NEM)-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) via two intersecting pathways controlled by the ATPases, p97 and NSF. Golgi reassembly stacking protein 65 (GRASP65), an NEM-sensitive membrane-bound component, is required for the stacking process. NSF-mediated cisternal regrowth requires a vesicle tethering protein, p115, which we now show operates through its two Golgi receptors, GM130 and giantin. p97-mediated cisternal regrowth is p115-independent, but we now demonstrate a role for p115, in conjunction with its receptors, in stacking p97 generated cisternae. Temporal analysis suggests that p115 plays a transient role in stacking that may be upstream of GRASP65-mediated stacking. These results implicate p115 and its receptors in the initial alignment and docking of single cisternae that may be an important prerequisite for stack formation. 相似文献
7.
Summary Candida albicans, a dimorphic yeast, has the abililty to switch its growth form between budding growth and hyphal growth. Since fungal growth involves secretory processes, spatial control of secretion should play a crucial role in such a morphogenetic transition. Brefeldin A (BFA), an inhibitor of the membrane trafficking system of eukaryotes, increases the occurrence of Golgi-like cisternae in the yeast. In the present study, BFA was used to obtain further insights into the spatial organization of secretory processes in hyphal growth ofC. albicans. BFA completely inhibited the formation and growth of germ tubes at a concentration of 35 M or higher. Electron microscopy of BFA-untreated germinated cells revealed many vesicles in the apical region and Golgi-like cisternae in the cytoplasm. In cells treated with 35 M BFA, the vesicles disappeared from the apical region, and, instead, stacked membrane cisternae and membrane-enclosed spherical dense bodies accumulated in the subapical region. These accumulated structures were positive for both polysaccharide staining and immunocytochemical staining with antibodies raised against cell surface antigens ofC. albicans, as were Golgi cisternae in BFA-untreated cells. In cells treated with a higher concentration of BFA (140 M), the structures that appeared in cells treated with 35 M BFA were no longer observed and the endoplasmic reticulum was extended and positive for polysaccharide staining. These results suggested that BFA affects different steps of membrane trafficking in a concentration-dependent manner. The accumulated structures induced by 35 M BFA seemed to be the altered forms of Golgi cisternae. Their accumulation in the subapical region of the germ tube might indicate that the step(s) in membrane trafficking that are associated with the Golgi pathway are vectorially organized in hyphal growth ofC. albicans.Abbrevations BFA brefeldin A - BSA bovine serum albumin - CBB Coomassie brilliant blue - Con A concanavalin A - HRP horseradish peroxidase 相似文献
8.
The Golgi apparatus is a network of polarized cisternae localized to the perinuclear region in mammalian cells. It undergoes extensive vesiculation at the onset of mitosis and its reassembly requires factors that are in part segregated via the mitotic spindle. Here we show that unlike typical Golgi markers, the Golgi-protein p115 partitioned with the spindle poles throughout mitosis. An armadillo-fold in its N terminus mediated a novel interaction between p115 and γ-tubulin and functioned in its centrosomal targeting. Both the N- and C-terminal regions of p115 were required to maintain Golgi structure. Strikingly, p115 was essential for mitotic spindle function and the resolution of the cytokinetic bridge because its depletion resulted in spindle collapse, chromosome missegregation, and failed cytokinesis. We demonstrate that p115 plays a critical role in mitosis progression, implicating it as the only known golgin to regulate both mitosis and apoptosis. 相似文献
9.
Mammals have three members of the intracellular phospholipase A1 protein family (phosphatidic acid preferring-phospholipase A1, p125, and KIAA0725p). In this study, we showed that KIAA0725p is localized in the Golgi, and is rapidly cycled between the Golgi and cytosol. Catalytic activity is important for targeting of KIAA0725p to Golgi membranes. RNA interference experiments suggested that KIAA0725p contributes to efficient membrane trafficking from the Golgi apparatus to the plasma membrane, but is not involved in brefeldin A-induced Golgi-to-endoplasmic reticulum retrograde transport.
Structured summary
MINT-8019765: KIAA0725 (uniprotkb:O94830) and Beta-COP (uniprotkb:P53618) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-8019775: KIAA0725 (uniprotkb:O94830) and GM130 (uniprotkb:Q5PXD5) colocalize (MI:0403) by fluorescence microscopy (MI:0416) 相似文献10.
《Autophagy》2013,9(10):1787-1800
Autophagy, a “self-eating” cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes. 相似文献
11.
The final step in the liberation of secretory vesicles from the trans-Golgi network (TGN) involves the mechanical action of the large GTPase dynamin as well as conserved dynamin-independent fission mechanisms, e.g. mediated by Brefeldin A-dependent ADP-ribosylated substrate (BARS). Another member of the dynamin family is the mammalian dynamin-like protein 1 (DLP1/Drp1) that is known to constrict and tubulate membranes, and to divide mitochondria and peroxisomes. Here, we examined a potential role for DLP1 at the Golgi complex. DLP1 localized to the Golgi complex in some but not all cell lines tested, thus explaining controversial reports on its cellular distribution. After silencing of DLP1, an accumulation of the apical reporter protein YFP-GL-GPI, but not the basolateral reporter VSVG-SP-GFP at the Golgi complex was observed. A reduction in the transport of YFP-GL-GPI to the plasma membrane was confirmed by surface immunoprecipitation and TGN-exit assays. In contrast, YFP-GL-GPI trafficking was not disturbed in cells silenced for BARS, which is involved in basolateral sorting and trafficking of VSVG-SP-GFP in COS-7 cells. Our data indicate a new role for DLP1 at the Golgi complex and thus a role for DLP1 as a novel component of the apical sorting machinery at the TGN is discussed. 相似文献
12.
Yu-Han Huang Abdul Qader O Al-aidaroos Hiu-Fung Yuen Shu-Dong Zhang Han-Ming Shen Ewelina Rozycka Cian M McCrudden Vinay Tergaonkar Abhishek Gupta You Bin Lin Jean Paul Thiery James T Murray Qi Zeng 《Autophagy》2014,10(10):1787-1800
Autophagy, a “self-eating” cellular process, has dual roles in promoting and suppressing tumor growth, depending on cellular context. PTP4A3/PRL-3, a plasma membrane and endosomal phosphatase, promotes multiple oncogenic processes including cell proliferation, invasion, and cancer metastasis. In this study, we demonstrate that PTP4A3 accumulates in autophagosomes upon inhibition of autophagic degradation. Expression of PTP4A3 enhances PIK3C3-BECN1-dependent autophagosome formation and accelerates LC3-I to LC3-II conversion in an ATG5-dependent manner. PTP4A3 overexpression also enhances the degradation of SQSTM1, a key autophagy substrate. These functions of PTP4A3 are dependent on its catalytic activity and prenylation-dependent membrane association. These results suggest that PTP4A3 functions to promote canonical autophagy flux. Unexpectedly, following autophagy activation, PTP4A3 serves as a novel autophagic substrate, thereby establishing a negative feedback-loop that may be required to fine-tune autophagy activity. Functionally, PTP4A3 utilizes the autophagy pathway to promote cell growth, concomitant with the activation of AKT. Clinically, from the largest ovarian cancer data set (GSE 9899, n = 285) available in GEO, high levels of expression of both PTP4A3 and autophagy genes significantly predict poor prognosis of ovarian cancer patients. These studies reveal a critical role of autophagy in PTP4A3-driven cancer progression, suggesting that autophagy could be a potential Achilles heel to block PTP4A3-mediated tumor progression in stratified patients with high expression of both PTP4A3 and autophagy genes. 相似文献
13.
Meenakshi Tiwari Lokendra K Sharma Difernando Vanegas Danielle A Callaway Yidong Bai James D Lechleiter Brian Herman 《Autophagy》2014,10(6):1054-1070
CASP2/caspase 2 plays a role in aging, neurodegeneration, and cancer. The contributions of CASP2 have been attributed to its regulatory role in apoptotic and nonapoptotic processes including the cell cycle, DNA repair, lipid biosynthesis, and regulation of oxidant levels in the cells. Previously, our lab demonstrated CASP2-mediated modulation of autophagy during oxidative stress. Here we report the novel finding that CASP2 is an endogenous repressor of autophagy. Knockout or knockdown of CASP2 resulted in upregulation of autophagy in a variety of cell types and tissues. Reinsertion of Caspase-2 gene (Casp2) in mouse embryonic fibroblast (MEFs) lacking Casp2 (casp2−/−) suppresses autophagy, suggesting its role as a negative regulator of autophagy. Loss of CASP2-mediated autophagy involved AMP-activated protein kinase, mechanistic target of rapamycin, mitogen-activated protein kinase, and autophagy-related proteins, indicating the involvement of the canonical pathway of autophagy. The present study also demonstrates an important role for loss of CASP2-induced enhanced reactive oxygen species production as an upstream event in autophagy induction. Additionally, in response to a variety of stressors that induce CASP2-mediated apoptosis, casp2−/− cells demonstrate a further upregulation of autophagy compared with wild-type MEFs, and upregulated autophagy provides a survival advantage. In conclusion, we document a novel role for CASP2 as a negative regulator of autophagy, which may provide important insight into the role of CASP2 in various processes including aging, neurodegeneration, and cancer. 相似文献
14.
Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis 总被引:7,自引:0,他引:7
下载免费PDF全文

Lane JD Lucocq J Pryde J Barr FA Woodman PG Allan VJ Lowe M 《The Journal of cell biology》2002,156(3):495-509
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity. 相似文献
15.
Caroline Mauvezin Meritxell Orpinell Víctor A Francis Francisco Mansilla Jordi Duran Vicent Ribas Manuel Palacín Patricia Boya Aurelio A Teleman Antonio Zorzano 《EMBO reports》2010,11(1):37-44
The regulation of autophagy in metazoans is only partly understood, and there is a need to identify the proteins that control this process. The diabetes‐ and obesity‐regulated gene (DOR), a recently reported nuclear cofactor of thyroid hormone receptors, is expressed abundantly in metabolically active tissues such as muscle. Here, we show that DOR shuttles between the nucleus and the cytoplasm, depending on cellular stress conditions, and re‐localizes to autophagosomes on autophagy activation. We demonstrate that DOR interacts physically with autophagic proteins Golgi‐associated ATPase enhancer of 16 kDa (GATE16) and microtubule‐associated protein 1A/1B‐light chain 3. Gain‐of‐function and loss‐of‐function studies indicate that DOR stimulates autophagosome formation and accelerates the degradation of stable proteins. CG11347, the DOR Drosophila homologue, has been predicted to interact with the Drosophila Atg8 homologues, which suggests functional conservation in autophagy. Flies lacking CG11347 show reduced autophagy in the fat body during pupal development. All together, our data indicate that DOR regulates autophagosome formation and protein degradation in mammalian and Drosophila cells. 相似文献
16.
Jin C Zhang Y Zhu H Ahmed K Fu C Yao X 《Biochemical and biophysical research communications》2005,334(1):16-22
Yip1p and Yif1p are essential for transport from ER to Golgi stack during the early secretory pathway in budding yeast. Here, we report the identification and characterization of human Yif1. Sequence analysis revealed that human Yif1 (HsYif1), like most of the other YIP1 protein family members, contains multiple transmembrane segments. Double immunofluorescence study revealed co-distribution of HsYif1 with Golgi marker such as GS27. To delineate the function of HsYif1, we conducted a yeast two-hybrid assay and identified an interaction between human HsYif1 and HsYip1A, a homolog of yeast Yip1. In addition, our immunoprecipitation pull-down assay validates the interaction between HsYif1 and HsYip1A. Moreover, our immunofluorescence study demonstrates the co-distribution of HsYif1 and HsYip1A. Significantly, over-expression of mutant HsYip1A-lacked cytosolic region disrupts the localization of HsYif1 to the Golgi, suggesting that HsYip1A specifies the localization of HsYif1 to the Golgi. Therefore, we conclude that human Yip1A interacts with and determines the localization of HsYif1 to the Golgi apparatus. 相似文献
17.
Sarri E Sicart A Lázaro-Diéguez F Egea G 《The Journal of biological chemistry》2011,286(32):28632-28643
The lipid metabolite diacylglycerol (DAG) is required for transport carrier biogenesis at the Golgi, although how cells regulate its levels is not well understood. Phospholipid synthesis involves highly regulated pathways that consume DAG and can contribute to its regulation. Here we altered phosphatidylcholine (PC) and phosphatidylinositol synthesis for a short period of time in CHO cells to evaluate the changes in DAG and its effects in membrane trafficking at the Golgi. We found that cellular DAG rapidly increased when PC synthesis was inhibited at the non-permissive temperature for the rate-limiting step of PC synthesis in CHO-MT58 cells. DAG also increased when choline and inositol were not supplied. The major phospholipid classes and triacylglycerol remained unaltered for both experimental approaches. The analysis of Golgi ultrastructure and membrane trafficking showed that 1) the accumulation of the budding vesicular profiles induced by propanolol was prevented by inhibition of PC synthesis, 2) the density of KDEL receptor-containing punctated structures at the endoplasmic reticulum-Golgi interface correlated with the amount of DAG, and 3) the post-Golgi transport of the yellow fluorescent temperature-sensitive G protein of stomatitis virus and the secretion of a secretory form of HRP were both reduced when DAG was lowered. We confirmed that DAG-consuming reactions of lipid synthesis were present in Golgi-enriched fractions. We conclude that phospholipid synthesis pathways play a significant role to regulate the DAG required in Golgi-dependent membrane trafficking. 相似文献
18.
Irving M Shapiro Robert Layfield Martin Lotz Carmine Settembre Caroline Whitehouse 《Autophagy》2014,10(1):7-19
From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton. 相似文献
19.
《Autophagy》2013,9(2):150-163
Autophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of the cytoplasm for delivery to the lysosome. Phosphatidylinositol 3-phosphate (PtdIns3P) produced by the class III phosphatidylinositol 3-kinase (PtdIns3K) complex is essential for canonical autophagosome formation. RAB5A, a small GTPase localized to early endosomes, has been shown to associate with the class III PtdIns3K complex, regulate its activity and promote autophagosome formation. However, little is known about how endosome-localized RAB5A functions with the class III PtdIns3K complex. Here we identified a novel endoplasmic reticulum (ER)-localized transmembrane protein, ER membrane protein complex subunit 6 (EMC6), which interacted with both RAB5A and BECN1/Beclin 1 and colocalized with the omegasome marker ZFYVE1/DFCP1. It was shown to regulate autophagosome formation, and its deficiency caused the accumulation of autophagosomal precursor structures and impaired autophagy. Our study showed for the first time that EMC6 is a novel regulator involved in autophagy. 相似文献
20.
AtCSLD2 is an integral Golgi membrane protein with its N-terminus facing the cytosol 总被引:1,自引:0,他引:1
Cellulose synthase-like proteins in the D family share high levels of sequence identity with the cellulose synthase proteins and also contain the processive beta-glycosyltransferase motifs conserved among all members of the cellulose synthase superfamily. Consequently, it has been hypothesized that members of the D family function as either cellulose synthases or glycan synthases involved in the formation of matrix polysaccharides. As a prelude to understanding the function of proteins in the D family, we sought to determine where they are located in the cell. A polyclonal antibody against a peptide located at the N-terminus of the Arabidopsis D2 cellulose synthase-like protein was generated and purified. After resolving Golgi vesicles from plasma membranes using endomembrane purification techniques including two-phase partitioning and sucrose density gradient centrifugation, we used antibodies against known proteins and marker enzyme assays to characterize the various membrane preparations. The Arabidopsis cellulose synthase-like D2 protein was found mostly in a fraction that was enriched with Golgi membranes. In addition, versions of the Arabidopsis cellulose synthase-like D2 proteins tagged with a green fluorescent protein was observed to co-localize with a DsRed-tagged Golgi marker protein, the rat alpha-2,6-sialyltransferase. Therefore, we postulate that the majority of Arabidopsis cellulose synthase-like D proteins, under our experimental conditions, are likely located at the Golgi membranes. Furthermore, protease digestion of Golgi-rich vesicles revealed almost complete loss of reaction with the antibodies, even without detergent treatment of the Golgi vesicles. Therefore, the N-terminus of the Arabidopsis cellulose synthase-like D2 protein likely faces the cytosol. Combining this observation with the transmembrane domain predictions, we postulate that the large hydrophilic domain of this protein also faces the cytosol. 相似文献