首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modifications of histones, the chief protein components of the chromatin, have emerged as critical regulators of life and death. While the “apoptotic histone code” came to light a few years ago, accumulating evidence indicates that autophagy, a cell survival pathway, is also heavily regulated by histone-modifying proteins. In this review we describe the emerging “autophagic histone code” and the role of histone modifications in the cellular life vs. death decision.  相似文献   

2.
The synthesis of histones and presence of histone mRNA sequences in embryos and larvae of the brine shrimp, Artemia, were investigated. Radiolabeling of proteins synthesized in vivo followed by electrophoretic and fluorographic analysis confirmed the prediction that histone synthesis is coordinated with the wave of DNA replication in newly hatched larvae. No histone synthesis occurs during development of encysted embryos. Hybridization of cloned Artemia histone gene DNA to total cell RNA indicated that dormant encysted embryos do not contain “masked” messenger RNA.  相似文献   

3.
The chromatin-regulatory principles of histone post-translational modifications (PTMs) are discussed with a focus on the potential alterations in chromatin functional state due to steric and mechanical constraints imposed by bulky histone modifications such as ubiquitin and SUMO. In the classical view, PTMs operate as recruitment platforms for histone “readers,” and as determinants of chromatin array compaction. Alterations of histone charges by “small” chemical modifications (e.g., acetylation, phosphorylation) could regulate nucleosome spontaneous dynamics without globally affecting nucleosome structure. These fluctuations in nucleosome wrapping can be exploited by chromatin-processing machinery. In contrast, ubiquitin and SUMO are comparable in size to histones, and it seems logical that these PTMs could conflict with canonical nucleosome organization. An experimentally testable hypothesis that by adding sterical bulk these PTMs can robustly alter nucleosome primary structure is proposed. The model presented here stresses the diversity of mechanisms by which histone PTMs regulate chromatin dynamics, primary structure and, hence, functionality.  相似文献   

4.
组蛋白变体及组蛋白替换   总被引:2,自引:0,他引:2  
吴南  桂建芳 《遗传》2006,28(4):493-500
组蛋白作为核小体的基本组分,是染色质的结构和功能必需的。对于不同状态的染色质,核小体中会组装入相应的组蛋白变体,并且各种组蛋白变体的尾部也能发生多种修饰。这些变体通过改变核小体的空间构象和稳定性,决定基因转录的激活或沉默,DNA的修复,染色体的异染色化等。在组蛋白替换过程中,组蛋白变体是通过相应的染色质重构复合物组装入核小体,不同的变体有着不同的组装途径。对组蛋白变体的研究是近年来表观遗传学新的研究热点,也是对“组蛋白密码”的新的诠释。并且,组蛋白替换揭示了DNA-组蛋白相互作用变化的一种新的机制。

  相似文献   

5.
6.
《Epigenetics》2013,8(2):222-235
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.  相似文献   

7.
组蛋白修饰调节机制的研究进展   总被引:2,自引:0,他引:2  
表观遗传学涉及到DNA甲基化、组蛋白修饰、染色体重塑和非编码RNA调控等内容,其中组蛋白修饰包括组蛋白的乙酰化、磷酸化、甲基化、泛素化及ADP核糖基化等,这些多样化的修饰以及它们时间和空间上的组合与生物学功能的关系又可作为一种重要的表观标志或语言,因而被称为“组蛋白密码”.相同组蛋白残基的磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化等,以及不同组蛋白残基的磷酸化与乙酰化、泛素化与甲基化、磷酸化与甲基化等组蛋白修 饰之间既相互协同又互相拮抗,形成了一个复杂的调节网络.对组蛋白修饰内在调节机制的研究将丰富“组蛋白密码”的内涵.  相似文献   

8.
植物同源结构域(PHD结构域)——组蛋白密码的解读器   总被引:1,自引:0,他引:1  
植物同源结构域(plant homeodomain,PHD结构域),是真核生物中一种进化保守的锌指结构域.多种调控基因转录、细胞周期、凋亡的蛋白质含有PHD结构域.研究表明,PHD结构域涉及多种功能,包括蛋白质相互作用,特别是同核小体组蛋白的作用.目前认为,各种组蛋白修饰(包括甲基化、乙酰化、磷酸化、泛素化等)的模式和组合,调节染色质状态和基因转录活性,并提出了组蛋白密码理论.PHD指结构域能特异性识别组蛋白的甲基化(修饰)密码,可能是组蛋白密码的一种重要解读器.  相似文献   

9.
植物扎根土壤,面对不利的环境胁迫无法逃避。然而,植物已经进化出对环境胁迫的记忆(stress memory)与警备抗性(或防御警备defense priming)等机制适应环境。环境胁迫在短时间内无法改变植物的DNA碱基序列,因此表观遗传被认为是植物对环境胁迫产生记忆和产生防御警备的主要机制,而组蛋白修饰被认为是最重要的机制,为胁迫记忆提供了可能。本文综述了非生物和生物胁迫下植物分别以胁迫记忆和防御警备机制为主导的组蛋白修饰参与抵御不良环境的最新进展,并提出该研究领域存在的问题和今后研究的重点与方向。深入探究组蛋白修饰与植物适应环境胁迫的关系,可为提高植物抗性、植物表型塑造、器官再生和作物改良等方面提供理论和技术指导。  相似文献   

10.
11.
Hyperglycemia is considered as one of the major determinants in the development of diabetic retinopathy, but the progression of retinopathy resists arrest after hyperglycemia is terminated, suggesting a metabolic memory phenomenon. Diabetes alters the expression of retinal genes, and this continues even after good glycemic control is re‐instituted. Since the expression of genes is affected by chromatin structure that is modulated by post‐translational modifications of histones, our objective is to investigate the role of histone acetylation in the development of diabetic retinopathy, and in the metabolic memory phenomenon. Streptozotocin‐induced rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by in GC for 6 months (PC‐GC). On a cellular level, retinal endothelial cells, the target of histopathology of diabetic retinopathy, were incubated in 5 or 20 mM glucose for 4 days. Activities of histone deacetylase (HDAC) and histone acetyltransferase (HAT), and histone acetylation were quantified. Hyperglycemia activated HDAC and increased HDAC1, 2, and 8 gene expressions in the retina and its capillary cells. The activity HAT was compromised and the acetylation of histone H3 was decreased. Termination of hyperglycemia failed to provide any benefits to diabetes‐induced changes in retinal HDAC and HAT, and histone H3 remained subnormal. This suggests “in principle” the role of global acetylation of retinal histone H3 in the development of diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression. J. Cell. Biochem. 110: 1306–1313, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
We recently showed that histone H2AX phosphorylated on serine 139 (γ-H2AX), a hallmark of DNA damage response (DDR), also forms early during apoptosis induced by death receptor activation. Here, we extend and discuss our findings on apoptotic γ-H2AX, which differs from the well-established DDR with nuclear foci. During apoptosis induced by death receptors agonists (TRAIL and FasL) and staurosporine, γ-H2AX is initiated in the nuclear periphery immediately inside the nuclear envelope while total H2AX remains distributed throughout the nucleus. This process is readily detectable by immunofluorescence microscopy and we refer to it as the “γ-H2AX ring”. It is conserved both in cancer and normal cells. The γ-H2AX ring contains the activated checkpoints kinases, ATM, Chk2 and DNA-PK; the latter being the main effector for the apoptotic γ-H2AX phosphorylation. Notably, we show here that the γ-H2AX ring coincides with phosphorylated H2B on serine 14 (PS14-H2B), another histone modification associated with apoptosis. The coordinated phosphorylations of H2AX and H2B suggest a previously unrecognized histone phosphorylation signature for apoptosis consisting of γ-H2AX together with PS14-H2B and possibly PY142-H2AX. This signature (“phospho-histone 2 code”) together with the γ-H2AX ring provides a new feature to monitor and study apoptosis.  相似文献   

13.
14.
15.
Spt6     
  相似文献   

16.
17.
18.
Histone variants play a critical role in chromatin structure and epigenetic regulation. These “deviant” proteins have been historically considered as the evolutionary descendants of ancestral canonical histones, helping specialize the nucleosome structure during eukaryotic evolution. Such view is now challenged by 2 major observations: first, canonical histones present extremely unique features not shared with any other genes; second, histone variants are widespread across many eukaryotic groups. The present work further supports the ancestral nature of histone variants by providing the first in vivo characterization of a functional macroH2A histone (a variant long defined as a specific refinement of vertebrate chromatin) in a non-vertebrate organism (the mussel Mytilus) revealing its recruitment into heterochromatic fractions of actively proliferating tissues. Combined with in silico analyses of genomic data, these results provide evidence for the widespread presence of macroH2A in metazoan animals, as well as in the holozoan Capsaspora, supporting an evolutionary origin for this histone variant lineage before the radiation of Filozoans (including Filasterea, Choanoflagellata and Metazoa). Overall, the results presented in this work help configure a new evolutionary scenario in which histone variants, rather than modern “deviants” of canonical histones, would constitute ancient components of eukaryotic chromatin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号