首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration.  相似文献   

2.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

3.
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.  相似文献   

4.
Cerebellar granule neurons (CGNs) exploit Bergmann glia (BG) fibres for radial migration, and cell-cell contacts have a pivotal role in this process. Nevertheless, little is known about the mechanisms that control CGN-BG interaction. Here we demonstrate that the actin-binding protein profilin1 is essential for CGN-glial cell adhesion and radial migration. Profilin1 ablation from mouse brains leads to a cerebellar hypoplasia, aberrant organization of cerebellar cortex layers and ectopic CGNs. Conversely, neuronal progenitor proliferation, tangential migration of neurons and BG morphology appear to be independent of profilin1. Our mouse data and the mapping of developmental neuropathies to the chromosomal region of PFN1 suggest a similar function for profilin1 in humans.  相似文献   

5.
The cell adhesion molecule Tag-1 is highly expressed in immature cerebellar granule neurons (CGNs) during axonogenesis and is down-regulated prior to onset of radial migration. However, its precise role(s) during development of mammalian CGNs has been unclear. Here we studied the effects of anti-Tag-1 function blocking antibodies on the development of mouse CGNs in primary cell culture and in situ. Interfering antibodies inhibited axon formation by mouse CGNs in both cell cultures and in cerebellar slices. Effects on axon extension in cell cultures were observed under conditions of homotypic cell–cell contact, consistent with inhibition of cell adhesion activity. Further, when used as a substratum Tag-1 protein strongly stimulated neurite outgrowth by CGNs. Antagonism of Tag-1 also enhanced CGN migration in modified Boyden chamber assays. Radial migration was inhibited by Tag-1 antibodies in cerebellar slices, possibly reflecting a block in early CGN maturation in situ. These findings are consistent with a regulatory role for Tag-1 in axon emergence as well as migratory behavior by developing mouse CGNs.  相似文献   

6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and tissue plasminogen activator (tPA) play important roles in neuronal migration and survival. However, a direct link between the neurotrophic effects of PACAP and tPA has never been investigated. In this study, we show that, in PC12 cells, PACAP induced a 9.85-fold increase in tPA gene expression through activation of the protein kinase A- and protein kinase C-dependent signaling pathways. In immature cerebellar granule neurons (CGN), PACAP stimulated tPA mRNA expression and release of proteolytically active tPA. Immunocytochemical labeling revealed the presence of tPA in the cytoplasm and processes of cultured CGN. The inhibitory effect of PACAP on CGN motility was not affected by the tPA substrate plasminogen or the tPA inhibitor plasminogen activator inhibitor-1. In contrast, plasminogen activator inhibitor-1 significantly reduced the stimulatory effect of PACAP on CGN survival. Altogether, these data indicate that tPA gene expression is activated by PACAP in both tumoral and normal neuronal cells. The present study also demonstrates that PACAP stimulates the release of tPA which promotes CGN survival by a mechanism dependent of its proteolytic activity.  相似文献   

7.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

8.
Few studies have been performed to evaluate the ultrastructural changes that exposure to static magnetic fields (SMF) can cause to the processes of cell migration and differentiation in the cerebellum during development. Thus, we have studied the development of the cerebellum in the chick embryo (n = 144) under a uniform SMF (20 mT). All of our observations were done on folium VIc of Larsell's classification. The cerebella of chick embryos, which were exposed solely on day 6 of incubation and sacrificed at day 13 of incubation [short exposure (S)1; n = 24], showed an external granular layer (EGL) that was less dense than the EGL in the control group (n = 24). The molecular layer (ML) exhibited a low number of migratory neuroblastic elements. Moreover, the internal granular layer (IGL) was immature, with the cellular elements less abundant and more dispersed than in controls. In chick embryos exposed on day 6 of incubation and sacrificed at day 17 (S2; n = 24), the outstanding feature was the regeneration of the different layers of the cerebellar cortex. The cerebellar cortex of chick embryos exposed continuously to an identical field from the beginning of the incubation up to day 13 [long exposure (L)1; n = 24] or day 17 (L2; n = 24) of incubation showed a higher number of alterations than that of group S1. Electron microscopy confirmed the findings from light microscopy and, at the same time, showed clear signs of cell degeneration and delay in the process of neuronal differentiation. This was more apparent in groups L1 (100%) and L2 (100%) than in groups S1 (95.4%) and S2 (65.2%). In conclusion, the present study showed that SMF can induce irreversible developmental effects on the processes of cell migration and differentiation of the chick cerebellar cortex. Bioelectromagnetics 18:36–46, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
10.
11.
Rat C6 glioma is a cell line that has been used extensively as a model of astroglia. Although this cell line retains many of the properties of developing glia, it does not resemble morphologically the specialized form of glia found embryonically, the radial glia. In experiments designed to study a mutant form of receptor protein tyrosine phosphatase β, we isolated a subclone of C6 called C6-R which, like radial glia, assumes a highly polarized radial-like morphology in culture. C6-R cells and, to a somewhat lesser extent, C6 cells, express cytoskeletal proteins found in developing astroglia including glial fibrillary acidic protein and RC1. As seen with radial glia, cerebellar granule cell bodies and neurites migrated along radial processes of C6-R cells in culture. Morphological analysis of dye-labeled cells injected into the developing forebrain revealed that a large fraction (∼60%) of the C6-R cells in the cortex assumed a radial orientation and about half of these (∼30%) made contact with the pial surface. In contrast, the parental C6 cells generally formed aggregates and only displayed a radial alignment when associated with blood vessels. These results suggest that we have generated a stable cell line from C6 glioma which has adopted certain key features of radial glia, including the ability to promote neuronal migration in culture and integrate radially in vivo in response to local cues. This cell line may be particularly useful for studying receptors on radial glia that mediate neuronal migration. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 291–304, 1998  相似文献   

12.
The tyrosine kinase receptor cKit and its ligand stem cell factor (SCF) are well known mediators in proliferation, survival, and positive chemotaxis of different cell types in the hematopoietic system. However, and in spite of previous reports showing robust expression of cKit and SCF in the brain during development, their possible function in the cerebral cortex has not been clarified. In this study, embryonic knockdown expression of cKit in the rat cortex by in utero electroporation of specific RNAi resulted in delayed radial migration of cortical neurons. In conditional Nestin‐cKit KO homozygous mutants, radial migration in the cortex was also delayed. The opposite phenotype was observed after overexpressing cKit in the cortex: radial migration was accelerated. Callosal fibers electroporated with cKit RNAi were also delayed in their extension within the contralateral cortex and eventually failed to innervate their target area. In vitro experiments showed that, whereas SCF was able to promote migration of cortical neurons, it had no effect on cortical neurite outgrowth. In summary, our results demonstrate that (1) cKit is necessary for radial migration of cortical neurons, probably through SCF binding and (2) cKit is necessary for the correct formation of the callosal projection, most likely by a mechanism not involving SCF. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 871–887, 2013  相似文献   

13.
14‐3‐3 proteins are ubiquitously‐expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14‐3‐3epsilon and 14‐3‐3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14‐3‐3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14‐3‐3gamma‐deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14‐3‐3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time‐lapse live imaging of brain slices revealed that the ablation of the 14‐3‐3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14‐3‐3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14‐3‐3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14‐3‐3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600–614, 2016  相似文献   

14.
Developmental differences between cerebellar granule cells during their migratory period were revealed using dissociated granule cell cultures isolated from 4, 7, or 10 days old (P4, P7, P10) mice. Under all culture conditions, the great majority of cultivated cell populations consisted of those granule cells that had not reach their final destination in the internal granule cell layer (IGL) by the age of isolation. In vitro morphological development and the expression of migratory markers (TAG‐1, astrotactin, or EphB2) showed similar characteristics between the cultures. The migration of 1008 granule cells isolated from P4, P7, and P10 cerebella and cultivated under identical conditions were analyzed using statistical methods. In vitro time‐lapse videomicroscopy revealed that P4 cells possessed the fastest migratory speed while P10 granule cells retained their migratory activity for the longest time in culture. Cultures obtained from younger postnatal ages showed more random migratory trajectories than P10 cultures. Our observations indicate that despite similar morphological and molecular properties, migratory differences exist in granule cell cultures isolated from different postnatal ages. Therefore, the age of investigation can substantially influence experimental results on the regulation of cell migration. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

15.
Precise cell cycle regulation is critical for nervous system development. To assess the role of the cell cycle regulator, retinoblastoma (Rb) protein, in forebrain development, we studied mice with telencephalon-specific Rb deletions. We examined the role of Rb in neuronal specification and migration of diverse neuronal populations. Although layer specification occurred at the appropriate time in Rb mutants, migration of early-born cortical neurons was perturbed. Consistent with defects in radial migration, neuronal cell death in Rb mutants specifically affected Cajal-Retzius neurons. In the ventral telencephalon, although calbindin- and Lhx6-expressing cortical neurons were generated at embryonic day 12.5, their tangential migration into the neocortex was dramatically and specifically reduced in the mutant marginal zone. Cell transplantation assays revealed that defects in tangential migration arose owing to a cell-autonomous loss of Rb in migrating interneurons and not because of a defective cortical environment. These results revealed a cell-autonomous role for Rb in regulating the tangential migration of cortical interneurons. Taken together, we reveal a novel requirement for the cell cycle protein, Rb, in the regulation of neuronal migration.  相似文献   

16.
Reactive oxygen species (ROS) act as signaling molecules that regulate nervous system physiology. ROS have been related to neural differentiation, neuritogenesis, and programmed cell death. Nevertheless, little is known about the mechanisms involved in the regulation of ROS during neuronal development. In this study, we evaluated the mechanisms by which ROS are regulated during neuronal development and the implications of these molecules in this process. Primary cultures of cerebellar granule neurons (CGN) were used to address these issues. Our results show that during the first 3 days of CGN development in vitro (days in vitro; DIV), the levels of ROS increased, reaching a peak at 2 and 3 DIV under depolarizing (25 mM KCl) and nondepolarizing (5 mM KCl) conditions. Subsequently, under depolarizing conditions, the ROS levels markedly decreased, but in nondepolarizing conditions, the ROS levels increased gradually. This correlated with the extent of CGN maturation. Also, antioxidants and NADPH-oxidases (NOX) inhibitors reduced the expression of Tau and MAP2. On the other hand, the levels of glutathione markedly increased at 1 DIV. We inferred that the ROS increase at this time is critical for cell survival because glutathione depletion leads to axonal degeneration and CGN death only at 2 DIV. During the first 3 DIV, NOX2 was upregulated and expressed in filopodia and growth cones, which correlated with the hydrogen peroxide (H2O2) distribution in the cell. Finally, NOX2 KO CGN showed shorter neurites than wild-type CGN. Taken together, these results suggest that the regulation of ROS is critical during the early stages of CGN development.  相似文献   

17.
During corticogenesis, the regulation of neuronal migration is crucial for the functional organization of the neocortex. Glutamatergic neurons are major excitatory components of the mammalian neocortex. In order to elucidate the specific molecular mechanisms underlying their development, we used single-cell microarray analysis to screen for mouse genes that are highly expressed in developing glutamatergic neurons. We identified dpy-19-like 1 (Dpy19l1), a homolog of C. elegans dpy-19, which encodes a putative multi-transmembrane protein shown to regulate directed migration of Q neuroblasts in C. elegans. At embryonic stages Dpy19l1 is highly expressed in glutamatergic neurons in the mouse cerebral cortex, whereas in the subpallium, where GABAergic neurons are generated, expression was below detectable levels. Downregulation of Dpy19l1 mediated by shRNA resulted in defective radial migration of glutamatergic neurons in vivo, which was restored by the expression of shRNA-insensitive Dpy19l1. Many Dpy19l1-knockdown cells were aberrantly arrested in the intermediate zone and the deep layer and, additionally, some extended single long processes towards the pial surface. Furthermore, we observed defective radial migration of bipolar cells in Dpy19l1-knockdown brains. Despite these migration defects, these cells correctly expressed Cux1, which is a marker for upper layer neurons, suggesting that Dpy19l1 knockdown results in migration defects but does not affect cell type specification. These results indicate that Dpy19l1 is required for the proper radial migration of glutamatergic neurons, and suggest an evolutionarily conserved role for the Dpy19 family in neuronal migration.  相似文献   

18.
Neuronal migration is critical for establishing neocortical cell layers and migration defects can cause neurological and psychiatric diseases. Recent studies show that radially migrating neocortical neurons use glia-dependent and glia-independent modes of migration, but the signaling pathways that control different migration modes and the transitions between them are poorly defined. Here, we show that Dab1, an essential component of the reelin pathway, is required in radially migrating neurons for glia-independent somal translocation, but not for glia-guided locomotion. During migration, Dab1 acts in translocating neurons to stabilize their leading processes in a Rap1-dependent manner. Rap1, in turn, controls cadherin function to regulate somal translocation. Furthermore, cell-autonomous neuronal deficits in somal translocation are sufficient to cause severe neocortical lamination defects. Thus, we define the cellular mechanism of reelin function during radial migration, elucidate the molecular pathway downstream of Dab1 during somal translocation, and establish the importance of glia-independent motility in neocortical development.  相似文献   

19.
Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration.  相似文献   

20.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号