首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a catabolic process by which the cytoplasm is sequestered into double-membrane vesicles and delivered to the lysosome/vacuole for breaking down and recycling of the low molecular weight degradation products. The isolation in the yeast Saccharomyces cerevisiae of many of the genes involved in autophagy constituted a milestone in understanding the molecular bases of this pathway. The identification of ortholog genes in other eukaryotic models revealed that the mechanism of autophagy is conserved among all eukaryotes. This pathway has been shown to be involved in a growing number of physiological processes and conversely, its deregulation may contribute to the development of several diseases. Recent reports have also shown that autophagy may play an important role in biotechnological processes related with the food industry. In this review we discuss current knowledge of the molecular mechanism of autophagy, including some applied aspects of autophagy in the field of food biotechnology.  相似文献   

2.
Autophagy is the major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles. It involves the rearrangement of subcellular membranes to sequester cargo for delivery to the lysosome where the sequestered material is degraded and recycled. For many decades, it has been known that autophagy occurs in a wide range of eukaryotic organisms and in multiple different cell types during starvation, cellular and tissue remodeling, and cell death. However, until recently, the functions of autophagy in normal development were largely unknown. The identification of a set of evolutionarily conserved genes that are essential for autophagy has opened up new frontiers for deciphering the role of autophagy in diverse biological processes. In this review, we summarize our current knowledge about the molecular machinery of autophagy and the role of the autophagic machinery in eukaryotic development.  相似文献   

3.
Just as Saccharomyces cerevisiae itself provides a model for so many processes essential to eukaryotic life, we anticipate that the methods and the mindset that have moved yeast biological research "beyond the genome" provide a prototype for making similar progress in other organisms. In this review I describe the experimental processes, results and utility of the current large-scale experimental approaches that use genomic data to provide a functional analysis of the yeast genome. Electronic Publication  相似文献   

4.
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.  相似文献   

5.
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.  相似文献   

6.
Regular protein synthesis is a needful and complex task for a healthy cell. Improper folding leads to the deposition of misfolded proteins in cells. Autophagy and ubiquitin–proteasome system (UPS) are the conserved intracellular degradation processes of eukaryotic cells. How exactly these two pathways cross talk to each other is unclear. We do not know how the impairment of autophagy or UPS leads to the disturbance in cellular homeostasis and contribute into cellular aging and neurodegeneration. Here in this review, we will focus on the functional interconnections of autophagy and UPS, and why their loss of function results in abnormal aggregation of misfolded proteotoxic species in cells. Finally, we enumerate and discuss the crucial inducers of autophagy pathways and elaborate their intersection steps, which have been considered to be advantageous in aging linked with the abnormal protein aggregation. The final goal of this review is to improve our current understanding about multifaceted properties and interactions of autophagy and UPS, which may provide new insights to identify novel therapeutic strategies for aging and neurodegenerative diseases.  相似文献   

7.
王棋文  常翠芳  谷宁宁  潘翠云  徐存拴 《遗传》2015,37(11):1116-1124
自噬是存在于真核细胞内的一种溶酶体依赖性的降解途径,在肝脏生理和病理过程中发挥着重要作用。肝脏具有强大的再生能力,在受到急、慢性损伤时,残肝细胞将会被激活进入细胞周期进行细胞增殖,以补偿丢失的肝组织和恢复肝功能。文章阐述了各种类型损伤之后的肝再生与自噬的关系。在物理性、酒精、食源性等因素引起的肝损伤中,肝脏通过启动自噬来促进肝再生;在化学性损伤的肝再生模型中,自噬在其中的作用仍然有争议;在病毒感染之后的肝再生中,一些嗜肝病毒(如丙肝病毒和乙肝病毒等)反而利用自噬来促进病毒颗粒复制,抑制肝再生。对自噬和肝再生机制的研究,将有助于进一步阐明再生过程,为治疗肝脏疾病提供新方法。  相似文献   

8.
《Autophagy》2013,9(2):294-295
Macroautophagy (hereafter autophagy) is a conserved membrane trafficking pathway responsible for the turnover of cytosolic protein and organelles during periods of nutrient deprivation. This pathway is also linked to a number of processes important for human health, including tumor suppression, innate immunity and the clearance of protein aggregates. As a result, there is tremendous interest in autophagy as a potential point of therapeutic intervention in a variety of pathological states. To achieve this goal, it is imperative that we develop a thorough understanding of the normal regulation of this process in eukaryotic cells. The Tor protein kinases clearly constitute a key element of this control as Tor activity inhibits this degradative process in all organisms examined, from yeast to man. Here, we discuss recent work indicating that the cAMP-dependent protein kinase (PKA) also plays a critical role in controlling autophagy in the budding yeast, Saccharomyces cerevisiae. A model describing how PKA activity might influence this degradative process, and how this control might be integrated with that of the Tor pathway, is presented.  相似文献   

9.
Autophagy is an evolutionary conserved process of bulk degradation and nutrient sequestration that occurs in all eukaryotic cells. Yet, in recent years, autophagy has also been shown to play a role in the specific degradation of individual proteins or protein aggregates as well as of damaged organelles. The process was initially discovered in yeast and has also been very well studied in mammals and, to a lesser extent, in plants. In this review, we summarize what is known regarding the various functions of autopahgy in plants but also attempt to address some specific issues concerning plant autophagy, such as the insufficient knowledge regarding autophagy in various plant species other than Arabidopsis, the fact that some genes belonging to the core autophagy machinery in various organisms are still missing in plants, the existence of autophagy multigene families in plants and the possible operation of selective autophagy in plants, a study that is still in its infancy. In addition, we point to plant-specific autophagy processes, such as the participation of autophagy during development and germination of the seed, a unique plant organ. Throughout this review, we demonstrate that the use of innovative bioinformatic resources, together with recent biological discoveries (such as the ATG8-interacting motif), should pave the way to a more comprehensive understanding of the multiple functions of plant autophagy.  相似文献   

10.
Relevance of microbial coculture fermentations in biotechnology   总被引:2,自引:0,他引:2  
The purpose of this article is to review coculture fermentations in industrial biotechnology. Examples for the advantageous utilization of cocultures instead of single cultivations include the production of bulk chemicals, enzymes, food additives, antimicrobial substances and microbial fuel cells. Coculture fermentations may result in increased yield, improved control of product qualities and the possibility of utilizing cheaper substrates. Cocultivation of different micro‐organisms may also help to identify and develop new biotechnological substances. The relevance of coculture fermentations and the potential of improving existing processes as well as the production of new chemical compounds in industrial biotechnology are pointed out here by means of more than 35 examples.  相似文献   

11.
Large numbers of publications investigating the molecular details, the regulation and the physiological roles of autophagic processes have appeared over the last few years, dealing with animals, plants and unicellular eukaryotic organisms. This strong interest is caused by the fact that autophagic processes are ubiquitous in eukaryotic organisms. They are involved in the adaptation of organisms to their environment and to stressful conditions, thereby contributing to cell and organism survival and longevity. This review article aims to describe the discovery of autophagy, the molecular details of this complex process, its regulation, and its specific functions in plants.  相似文献   

12.
Translation, that is biosynthesis of polypeptides in accordance with information encoded in the genome, is one of the most important processes in the living cell, and it has been in the spotlight of international research for many years. The mechanisms of protein biosynthesis in bacteria and in the eukaryotic cytoplasm are now understood in great detail. However, significantly less is known about translation in eukaryotic mitochondria, which is characterized by a number of unusual features. In this review, we summarize current knowledge about mitochondrial translation in different organisms while paying special attention to the aspects of this process that differ from cytoplasmic protein biosynthesis.  相似文献   

13.
《Autophagy》2013,9(3):181-206
The increasing interest in autophagy in a wide range of organisms, accompanied by an ever-growing influx of researchers into this field, necessitates a good understanding of the methodologies available to monitor this process. In this review we discuss current approaches that can be used to follow the overall process of autophagy, as well as individual steps, from yeast to human. The majority of the review considers methods that apply to macroautophagy; however, we also consider alternative types of degradation including chaperone-mediated autophagy and microautophagy. This information is meant to provide a resource for newcomers as well as a stimulus for experienced researchers who may be prompted to develop additional assays to examine autophagy-related pathways.  相似文献   

14.
The aim of this article is to review how yeast has contributed to contemporary biotechnology and to seek underlying principles relevant to its future exploitation for human benefit. Recent advances in systems biology combined with new knowledge of genome diversity promise to make yeast the eukaryotic workhorse of choice for production of everything from probiotics and pharmaceuticals to fuels and chemicals. The ability to engineer new capabilities through introduction of controlled diversity based on a complete understanding of genome complexity and metabolic flux is key. Here, we briefly summarise the history that has led to these apparently simple organisms being employed in such a broad range of commercial applications. Subsequently, we discuss the likely consequences of current yeast research for the future of biotechnological innovation.  相似文献   

15.
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.  相似文献   

16.
17.
Methods for monitoring autophagy from yeast to human   总被引:1,自引:0,他引:1  
The increasing interest in autophagy in a wide range of organisms, accompanied by an ever-growing influx of researchers into this field, necessitates a good understanding of the methodologies available to monitor this process. In this review we discuss current approaches that can be used to follow the overall process of autophagy, as well as individual steps, from yeast to human. The majority of the review considers methods that apply to macroautophagy; however, we also consider alternative types of degradation including chaperone-mediated autophagy and microautophagy. This information is meant to provide a resource for newcomers as well as a stimulus for experienced researchers who may be prompted to develop additional assays to examine autophagy-related pathways.  相似文献   

18.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

19.
Apoptosis and autophagy are fundamental homeostatic processes in eukaryotic organisms fulfilling essential roles in development and adaptation. Recently, the anti-apoptotic factor Bcl-2 has been reported to also inhibit autophagy, thus establishing a potential link between these pathways, but the mechanistic details are only beginning to emerge. Here we show that Bcl-2 directly binds to the phagophore-associated protein GABARAP. NMR experiments revealed that the interaction critically depends on a three-residue segment (EWD) of Bcl-2 adjacent to the BH4 region, which is anchored to one of the two hydrophobic pockets on the GABARAP molecule. This is at variance with the majority of GABARAP interaction partners identified previously, which occupy both hydrophobic pockets simultaneously. Bcl-2 affinity could also be detected for GEC1, but not for other mammalian Atg8 homologs. Finally, we provide evidence that overexpression of Bcl-2 inhibits lipidation of GABARAP, a key step in autophagosome formation, possibly via competition with the lipid conjugation machinery. These results support the regulatory role of Bcl-2 in autophagy and define GABARAP as a novel interaction partner involved in this intricate connection.  相似文献   

20.
Autophagy in Yeast: Mechanistic Insights and Physiological Function   总被引:11,自引:0,他引:11       下载免费PDF全文
Unicellular eukaryotic organisms must be capable of rapid adaptation to changing environments. While such changes do not normally occur in the tissues of multicellular organisms, developmental and pathological changes in the environment of cells often require adaptation mechanisms not dissimilar from those found in simpler cells. Autophagy is a catabolic membrane-trafficking phenomenon that occurs in response to dramatic changes in the nutrients available to yeast cells, for example during starvation or after challenge with rapamycin, a macrolide antibiotic whose effects mimic starvation. Autophagy also occurs in animal cells that are serum starved or challenged with specific hormonal stimuli. In macroautophagy, the form of autophagy commonly observed, cytoplasmic material is sequestered in double-membrane vesicles called autophagosomes and is then delivered to a lytic compartment such as the yeast vacuole or mammalian lysosome. In this fashion, autophagy allows the degradation and recycling of a wide spectrum of biological macromolecules. While autophagy is induced only under specific conditions, salient mechanistic aspects of autophagy are functional in a constitutive fashion. In Saccharomyces cerevisiae, induction of autophagy subverts a constitutive membrane-trafficking mechanism called the cytoplasm-to-vacuole targeting pathway from a specific mode, in which it carries the resident vacuolar hydrolase, aminopeptidase I, to a nonspecific bulk mode in which significant amounts of cytoplasmic material are also sequestered and recycled in the vacuole. The general aim of this review is to focus on insights gained into the mechanism of autophagy in yeast and also to review our understanding of the physiological significance of autophagy in both yeast and higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号