首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There has been major progress in our understanding of hepatitis C virus (HCV) molecular virology in recent years. An essential prerequisite for this progress was the availability of functional molecular HCV clones, that serve as a starting point in order to establish cell culture systems. The first of these was the HCV replicon system, which used self-replicating subgenomic viral RNAs. However, these replicons only recapitulated the intracellular life cycle, and did not support production of infectious virus: this became possible with the identification of an HCV isolate that, for unknown reasons, replicates to very high levels in a human hepatoma cell line. Cells containing this genome release virus particles that are infectious in cell culture and in vivo. Without doubt, this system provides new possibilities for molecular studies of the HCV life cycle and the development of novel antiviral concepts.  相似文献   

2.
A hallmark of the hepatitis C virus (HCV) replication cycle is its tight link with host cell lipid synthesis. This is best illustrated by the peculiar pathway used for the assembly of infectious HCV particles. Research in the past few years has shown that formation of HC-virions is closely connected to lipid droplets that could serve as an assembly platform. Moreover, HCV particle production appears to be strictly linked to very-low-density lipoproteins. In this review, we focus on new insights into the molecular aspects of the architecture and assembly of this unique type of virus particle.  相似文献   

3.
Hepatitis C virus (HCV) infection is a global health concern affecting an estimated 3% of the world's population. Recently, cell culture systems have been established, allowing recapitulation of the complete virus life cycle for the first time. Since the HCV proteins p7 and NS2 are not predicted to be major components of the virion, nor are they required for RNA replication, we investigated whether they might have other roles in the viral life cycle. Here we utilize the recently described infectious J6/JFH chimera to establish that the p7 and NS2 proteins are essential for HCV infectivity. Furthermore, unprocessed forms of p7 and NS2 were not required for this activity. Mutation of two conserved basic residues, previously shown to be important for the ion channel activity of p7 in vitro, drastically impaired infectious virus production. The protease domain of NS2 was required for infectivity, whereas its catalytic active site was dispensable. We conclude that p7 and NS2 function at an early stage of virion morphogenesis, prior to the assembly of infectious virus.  相似文献   

4.
5.
Nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) possesses multiple and diverse functions in RNA replication, interferon resistance, and viral pathogenesis. Recent studies suggest that NS5A is involved in the assembly and maturation of infectious viral particles; however, precisely how NS5A participates in virus production has not been fully elucidated. In the present study, we demonstrate that NS5A is a prerequisite for HCV particle production as a result of its interaction with the viral capsid protein (core protein). The efficiency of virus production correlated well with the levels of interaction between NS5A and the core protein. Alanine substitutions for the C-terminal serine cluster in domain III of NS5A (amino acids 2428, 2430, and 2433) impaired NS5A basal phosphorylation, leading to a marked decrease in NS5A-core interaction, disturbance of the subcellular localization of NS5A, and disruption of virion production. Replacing the same serine cluster with glutamic acid, which mimics the presence of phosphoserines, partially preserved the NS5A-core interaction and virion production, suggesting that phosphorylation of these serine residues is important for virion production. In addition, we found that the alanine substitutions in the serine cluster suppressed the association of the core protein with viral genome RNA, possibly resulting in the inhibition of nucleocapsid assembly. These results suggest that NS5A plays a key role in regulating the early phase of HCV particle formation by interacting with core protein and that its C-terminal serine cluster is a determinant of the NS5A-core interaction.  相似文献   

6.
Hepatitis delta virus (HDV) causes both acute and chronic liver disease throughout the world. Effective medical therapy is lacking. Previous work has shown that the assembly of HDV virus-like particles (VLPs) could be abolished by BZA-5B, a compound with farnesyltransferase inhibitory activity. Here we show that FTI-277, another farnesyltransferase inhibitor, prevented the production of complete, infectious HDV virions of two different genotypes. Thus, in spite of the added complexity and assembly determinants of infectious HDV virions compared to VLPs, the former are also sensitive to pharmacological prenylation inhibition. Moreover, production of HDV genotype III virions, which is associated with particularly severe clinical disease, was as sensitive to prenylation inhibition as was that of HDV genotype I virions. Farnesyltransferase inhibitors thus represent an attractive potential class of novel antiviral agents for use against HDV, including the genotypes associated with most severe disease.  相似文献   

7.
The recent development of infectious retroviral pseudotypes bearing hepatitis C virus (HCV) glycoproteins represents an opportunity to study the functionally active form of the HCV E1 and E2 glycoproteins. In the culture supernatant of cells producing HCV retroviral pseudotypes, the majority of E2 was not associated with infectious particles and failed to sediment on sucrose gradients. The E2 that was incorporated into infectious particles appeared as a triplet of diffuse bands at 60, 70, and 90 kDa. Similarly, three major forms of E1 were incorporated into the pseudotype particles, migrating at 33, 31, and 25 kDa. Endoglycosidase H (endo-H) treatment of particles demonstrated that the incorporated E1 was partially or completely sensitive to digestion. In contrast, the majority of the incorporated E2 was endo-H resistant. Purified pseudotype particles were found to contain both disulfide-linked aggregates and nonaggregated E1 and E2. HCV pseudotypes generated from cells expressing E1E2p7 showed similar heterogeneity in the incorporated glycoproteins and were of comparable infectivity to those generated by expression of E1E2. Our results demonstrate the heterogenous nature of E1 and E2 incorporated into retroviral pseudotypes and highlight the difficulty in identifying forms of the HCV glycoproteins that initiate infection.  相似文献   

8.
Recently, complete replication of hepatitis C virus (HCV) in tissue culture was established using the JFH1 isolate. To analyze determinants of HCV genome packaging and virion assembly, we developed a system that supports particle production based on trans-packaging of subgenomic viral RNAs. Using JFH1 helper viruses, we show that subgenomic JFH1 replicons lacking the entire core to NS2 coding region are efficiently encapsidated into infectious virus-like particles. Similarly, chimeric helper viruses with heterologous structural proteins trans-package subgenomic JFH1 replicons. Like authentic cell culture-produced HCV (HCVcc) particles, these trans-complemented HCV particles (HCVTCP) penetrate target cells in a CD81 receptor-dependent fashion. Since HCVTCP production was limited by competition between the helper and subgenomic RNA and to avoid contamination of HCVTCP stocks with helper viruses, we created HCV packaging cells. These cells encapsidate various HCV replicons with high efficiency, reaching infectivity titers up to 106 tissue culture infectious doses 50 per milliliter. The produced particles display a buoyant density comparable to HCVcc particles and can be propagated in the packaging cell line but support only a single-round infection in naïve cells. Together, this work demonstrates that subgenomic HCV replicons are assembly competent, thus excluding cis-acting RNA elements in the core-to-NS2 genomic region essential for RNA packaging. The experimental system described here should be helpful to decipher the mechanisms of HCV assembly and to identify RNA elements and viral proteins involved in particle formation. Similar to other vector systems of plus-strand RNA viruses, HCVTCP may prove valuable for gene delivery or vaccination approaches.Hepatitis C virus (HCV) is an enveloped plus-strand RNA virus of the genus Hepacivirus within the family Flaviviridae (34). The HCV genome is approximately 9.6 kb in length and consists of a single open reading frame encoding a polyprotein of ca. 3,000 amino acids and nontranslated regions (NTRs) located at the 5′ and 3′ termini. These NTRs are highly structured RNA segments encompassing critical cis-active RNA elements essential for genome replication and RNA translation (31). Viral proteins are expressed in a cap-independent manner by means of an internal ribosome entry site (IRES) located in the 5′ NTR. Co- and posttranslational cleavages liberate 10 viral proteins: core; envelope protein 1 (E1) and E2, representing the structural proteins that constitute the virion; a small membrane-associated ion channel protein designated p7 that is essential for virus assembly (16, 22, 43, 57); and six nonstructural (NS) proteins (NSs 2, 3, 4A, 4B, 5A, and 5B). HCV proteins NS3 to NS5B are both necessary and sufficient to establish membrane-bound replication complexes catalyzing RNA replication (13, 36). More recent data indicate that the NS2 protease that catalyzes cleavage at the NS2-NS3 site in addition participates in assembly and release of infectious viruses (22). Finally, ribosomal frame-shifting and internal translation initiation yield a group of additional proteins designated ARFP (alternative reading frame protein) or core+1 proteins. However, their function for the HCV replication cycle is currently not known.One hallmark of HCV is its high propensity to establish a persistent infection, which frequently causes progressive morbidity ranging from hepatic fibrosis to cirrhosis and hepatocellular carcinoma (20). Despite considerable progress in the treatment of HCV infection, the currently available therapy (a combination of pegylated interferon alpha with ribavirin) is not well tolerated and is efficacious in only ca. 50% of patients infected with the most prevalent genotype 1 (38). Therapeutic or prophylactic vaccines are not available. For these reasons and with currently ca. 170 million persistently infected individuals, HCV infection represents a considerable global health problem necessitating pertinent basic and applied research efforts.In recent years three major advances enabled analysis of the HCV replication cycle in tissue culture. First, Lohmann and colleagues developed subgenomic HCV replicons (36). These autonomously replicating RNA molecules carry all the genetic elements necessary for self-replication (the NTRs and NS3 to NS5B), including a selectable marker or a reporter gene in place of the viral structural proteins, and an internal IRES for expression of the HCV replicase genes (reviewed in reference 45). Second, HCV pseudotype particles, i.e., retroviral particles surrounded by an envelope carrying HCV E1-E2 complexes in place of their cognate envelope proteins, were established (3, 21). As these particles carry functional HCV glycoprotein complexes on their surface, HCV pseudotype particles have been instrumental for the analysis of E1-E2 receptor interactions and the early events of HCV infection (reviewed in reference 2). Finally, in 2005 fully permissive cell culture systems which are based on the JFH1 clone were described (33, 66, 72). This isolate replicates with unprecedented efficiency in transfected Huh7 human hepatoma cells and produces particles infectious both in vitro and in vivo, thus providing a model system reproducing the complete HCV replication cycle.Use of these novel models has considerably expanded our knowledge of viral and host cell factors involved in HCV replication (for a recent review, see reference 59). It is now known that similar to virtually all other plus-strand RNA viruses, HCV induces intracellular membrane alterations and replicates its genome in conjunction with vesicular membrane structures, the so-called “membranous web” (10, 13). Presumably as a consequence of this specific, rather secluded architecture of the membrane-associated replication machinery, all viral proteins involved in RNA replication, with the exception of NS5A function in cis, cannot be complemented in trans (1). Restricted trans-complementation of viral replicase proteins has been observed for other plus-strand RNA viruses as well, thus indicating that a rather “closed” replication machinery is a shared feature of these viruses (15, 27, 60). In contrast, for a number of plus-strand RNA viruses from diverse virus families like Picornaviridae (poliovirus), Alphaviridae (Sindbis virus, Semliki Forest virus, and Venezuelan equine encephalitis virus), Coronaviridae (human coronavirus E229), and Flaviviridae (tick-borne encephalitis virus, Kunjin virus, West Nile virus, and yellow fever virus), assembly of progeny viruses can be achieved when structural proteins are expressed in trans and independent from the RNA molecule that encodes the replicase proteins. Similarly, Miyanari recently reported that HCV genomes with lethal mutations in core protein can be rescued by ectopic expression of functional core protein (39). This flexibility has been extensively used to create viral vectors for gene delivery as well as viral vector-based immunization approaches (32, 48, 49, 61, 68) (for a recent review on alphaviral vectors, the most frequently used among plus strand RNA vectors, see reference 37). In these systems the viral genome region encoding the structural proteins is replaced by a transgene. The resulting defective vector genomes are capable of RNA replication but due to the lack of structural proteins are unable to produce progeny virus particles. This defect is rescued by expression of the structural proteins in trans via helper viruses (28, 55) or, in some cases, by DNA constructs stably expressed in packaging cell lines (17). The resulting virus-like particles are infectious but support only single-round infection and are unable to spread, thus improving the safety of the viral transduction system.Given the success of plus-strand RNA vector technology for basic and applied clinical research, in this study we developed a trans-complementation system for HCV that provided new insights into the basic principles of HCV particle assembly.  相似文献   

9.
10.
11.
The recent development of a cell culture infection model for hepatitis C virus (HCV) permits the production of infectious particles in vitro. In this report, we demonstrate that infectious particles are present both within the infected cells and in the supernatant. Kinetic analysis indicates that intracellular particles constitute precursors of the secreted infectious virus. Ultracentrifugation analyses indicate that intracellular infectious viral particles are similar in size (approximately 65 to 70 nm) but different in buoyant density (approximately 1.15 to 1.20 g/ml) from extracellular particles (approximately 1.03 to 1.16 g/ml). These results indicate that infectious HCV particles are assembled intracellularly and that their biochemical composition is altered during viral egress.  相似文献   

12.
13.
Hepatitis C virus entry   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Hepatitis C virus infection represents a major problem of public health with around 350 millions of chronically infected individuals worldwide. The frequent evolution towards severe liver disease and cancer are the main features of HCV chronic infection. Antiviral therapies, mainly based on the combination of IFN and ribavirin can only assure a long term eradication of the virus in less than half of treated patients. The mechanisms underlying HCV pathogenesis and persistence in the host are still largely unknown and the efforts made by researchers in the understanding the viral biology have been hampered by the absence of a reliable in vitro and in vivo system reproducing HCV infection. The present review will mainly focus on viral pathogenetic mechanisms based on the interaction of HCV proteins (especially core, NS3 and NS5A) with host cellular signaling transduction pathways regulating cell growth and viability and on the strategies developed by the virus to persist in the host and escape to antiviral therapy. Past and recent data obtained in this field with different experimental approaches will be discussed.  相似文献   

16.
The clonal variability of the hepatitis C virus (HCV) protease gene in 24 individuals with HCV genotypes 1a, 1b, 2b, and 3a who were coinfected with the human immunodeficiency virus was evaluated. Within-genotype variability at the nucleotide and amino acid levels ranged from 6.5 to 8.6% and 2.2 to 3.8%, respectively. After adjustments were made for correlation of intrapatient clonal variation, mixed-model analysis indicated that nucleotide and amino acid variability among patients with different genotypes did not differ significantly. However, within individual patients, clonal variability differed by up to 5.3% and 5.8% at the nucleotide and amino acid levels, respectively, and genotype 1a had significantly greater nucleotide variability than other genotypes (P = 0.01). Significant variability exists within HCV protease gene variants at the patient level and could affect the effectiveness of HCV protease inhibitors.  相似文献   

17.
18.
19.
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis.  相似文献   

20.
The mitogen activated protein kinases-extracellular signal regulated kinases (MAPK-ERK) pathway is involved in regulation of multiple cellular processes including the cell cycle. In the present study using a Huh7 cell line Con1 with an HCV replicon, we have shown that the MAPK-ERK pathway plays a significant role in the modulation of HCV replication and protein expression and might influence IFN-α signalling. Epithelial growth factor (EGF) was able to stimulate ERK activation and decreased HCV RNA load while a MAPK-ERK pathway inhibitor U0126 led to an elevated HCV RNA load and higher NS5A protein amounts in Con1 cells. It could be further demonstrated that the inhibition of the MAPK-ERK pathway facilitated the translation directed by the HCV internal ribosome entry site. Consistently, a U0126 treatment enhanced activity of the HCV reporter replicon in transient transfection assays. Thus, the MAPK-ERK pathway plays an important role in the regulation of HCV gene expression and replication. In addition, cyclin-dependent kinases (CDKs) downstream of ERK may also be involved in the modulation of HCV replication since roscovitine, an inhibitor of CDKs had a similar effect to that of U0126. Modulation of the cell cycle progression by cell cycle inhibitor or RNAi resulted consistently in changes of HCV RNA levels. Further, the replication of HCV replicon in Con1 cells was inhibited by IFN-α. The inhibitory effect of IFN-α could be partly reversed by pre-incubation of Con-1 cells with inhibitors of the MAPK-ERK pathway and CDKs. It could be shown that the MAPK-ERK inhibitors are able to partially modulate the expression of interferon-stimulated genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号