首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Autophagy》2013,9(12):2126-2139
We screened a chemical library in MCF-7 cells stably expressing green fluorescent protein (GFP)-conjugated microtubule-associated protein 1 light chain 3 (LC3) (GFP-LC3-MCF-7) using cell-based assay, and identified BIX-01294 (BIX), a selective inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2), as a strong autophagy inducer. BIX enhanced formation of GFP-LC3 puncta, LC3-II, and free GFP, signifying autophagic activation. Inhibition of these phenomena with chloroquine and increasement in punctate dKeima ratio (550/438) signal indicated that BIX activated autophagic flux. BIX-induced cell death was suppressed by the autophagy inhibitor, 3-methyladenine, or siRNA against BECN1 (VPS30/ATG6), ATG5, and ATG7, but not by caspase inhibitors. Moreover, EHMT2 siRNA augmented GFP-LC3 puncta, LC3-II, free GFP, and cell death, implying that inhibition of EHMT2 caused autophagy-mediated cell death. Treatment with EHMT2 siRNA and BIX accumulated intracellular reactive oxygen species (ROS). BIX augmented mitochondrial superoxide via NADPH oxidase activation. In addition, BIX increased hydrogen peroxide and glutathione redox potential in both cytosol and mitochondria. Treatment with N-acetyl-L-cysteine (NAC) or diphenyleneiodonium chloride (DPI) decreased BIX-induced LC3-II, GFP-LC3 puncta, and cell death, indicating that ROS instigated autophagy-dependent cell death triggered by BIX. We observed that BIX potentiated autophagy-dependent and caspase-independent cell death in estrogen receptor (ESR)-negative SKBr3 and ESR-positive MCF-7 breast cancer cells, HCT116 colon cancer cells, and importantly, in primary human breast and colon cancer cells. Together, the results suggest that BIX induces autophagy-dependent cell death via EHMT2 dysfunction and intracellular ROS accumulation in breast and colon cancer cells, therefore EHMT2 inhibition can be an effective therapeutic strategy for cancer treatment.  相似文献   

3.
4.
《Autophagy》2013,9(12):2362-2378
We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.  相似文献   

5.
Epigenetic regulation by histone methyltransferase G9a is known to control autophagic responses. As the link between autophagy and metabolic homeostasis is widely accepted, we investigated whether G9a affects metabolic circuitries to affect autophagic response in glioma cells. Both pharmacological inhibition and siRNA mediated knockdown of G9a increased autophagy marker LC3B in glioma cells. G9a inhibitor BIX-01294 (BIX) induced Akt-dependent increase in HIF-1α expression and activity. Inhibition of Akt-HIF-1α axis reversed BIX-mediated (i) increase in LC3B expression and (ii) decrease in Yes-associated protein 1 (YAP1) phosphorylation. YAP1 over-expression abrogated BIX induced increase in LC3B expression. Interestingly, BIX induced increase in metabolic modelers TIGAR (TP53-induced glycolysis and apoptosis regulator) and PKM2 (Pyruvate kinase M2) were crucial for BIX-mediated changes, as transfection with TIGAR mutant or PKM2 siRNA reversed BIX-mediated alterations in pYAP1 and LC3B expression. Coherent with the in vitro observation, BIX had no significant effect on the tumor burden in heterotypic xenograft glioma mouse model. Elevated LC3B and PKM2 in BIX-treated xenograft tissue was accompanied by decreased YAP1 levels. Taken together, our findings suggest that Akt-HIF-1α axis driven PKM2-YAP1 cross talk activates autophagic responses in glioma cells upon G9a inhibition.  相似文献   

6.
7.
Using a bioinformatic approach, we identified a TP53INP1-related gene encoding a protein with 30% identity with tumor protein 53-induced nuclear protein 1 (TP53INP1), which was named TP53INP2. TP53INP1 and TP53INP2 sequences were found in several species ranging from Homo sapiens to Drosophila melanogaster, but orthologues were found neither in earlier eukaryotes nor in prokaryotes. To gain insight into the function of the TP53INP2 protein, we carried out a yeast two-hybrid screening that showed that TP53INP2 binds to the LC3-related proteins GABARAP and GABARAP-like2, and then we demonstrated by coimmunoprecipitation that TP53INP2 interacts with these proteins, as well as with LC3 and with the autophagosome transmembrane protein VMP1. TP53INP2 translocates from the nucleus to the autophagosome structures after activation of autophagy by rapamycin or starvation. Also, we showed that TP53INP2 expression is necessary for autophagosome development because its small interfering RNA-mediated knockdown strongly decreases sensitivity of mammalian cells to autophagy. Finally, we found that interactions between TP53INP2 and LC3 or the LC3-related proteins GABARAP and GABARAP-like2 require autophagy and are modulated by wortmannin as judged by bioluminescence resonance energy transfer assays. We suggest that TP53INP2 is a scaffold protein that recruits LC3 and/or LC3-related proteins to the autophagosome membrane by interacting with the transmembrane protein VMP1. It is concluded that TP53INP2 is a novel gene involved in the autophagy of mammalian cells.  相似文献   

8.
Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.  相似文献   

9.
10.
MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.  相似文献   

11.
EEF2K (eukaryotic elongation factor-2 kinase), also known as Ca2+/calmodulin-dependent protein kinase III, functions in downregulating peptide chain elongation through inactivation of EEF2 (eukaryotic translation elongation factor 2). Currently, there is a limited amount of information on the promotion of autophagic survival by EEF2K in breast and glioblastoma cell lines. However, the precise role of EEF2K in carcinogenesis as well as the underlying mechanism involved is still poorly understood. In this study, contrary to the reported autophagy-promoting activity of EEF2K in certain cancer cells, EEF2K is shown to negatively regulate autophagy in human colon cancer cells as indicated by the increase of LC3-II levels, the accumulation of LC3 dots per cell, and the promotion of autophagic flux in EEF2K knockdown cells. EEF2K negatively regulates cell viability, clonogenicity, cell proliferation, and cell size in colon cancer cells. Autophagy induced by EEF2K silencing promotes cell survival and does not potentiate the anticancer efficacy of the AKT inhibitor MK-2206. In addition, autophagy induced by silencing of EEF2K is attributed to induction of protein synthesis and activation of the AMPK-ULK1 pathway, independent of the suppression of MTOR activity and ROS generation. Knockdown of AMPK or ULK1 significantly abrogates EEF2K silencing-induced increase of LC3-II levels, accumulation of LC3 dots per cell as well as cell proliferation in colon cancer cells. In conclusion, silencing of EEF2K promotes autophagic survival via activation of the AMPK-ULK1 pathway in colon cancer cells. This finding suggests that upregulation of EEF2K activity may constitute a novel approach for the treatment of human colon cancer.  相似文献   

12.
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.  相似文献   

13.
ABSTRACT

Defective macroautophagy/autophagy and mitochondrial dysfunction are known to stimulate senescence. The mitochondrial regulator PPARGC1A (peroxisome proliferator activated receptor gamma, coactivator 1 alpha) regulates mitochondrial biogenesis, reducing senescence of vascular smooth muscle cells (VSMCs); however, it is unknown whether autophagy mediates PPARGC1A-protective effects on senescence. Using ppargc1a?/- VSMCs, we identified the autophagy receptor SQSTM1/p62 (sequestosome 1) as a major regulator of autophagy and senescence of VSMCs. Abnormal autophagosomes were observed in VSMCs in aortas of ppargc1a?/- mice. ppargc1a?/- VSMCs in culture presented reductions in LC3-II levels; in autophagosome number; and in the expression of SQSTM1 (protein and mRNA), LAMP2 (lysosomal-associated membrane protein 2), CTSD (cathepsin D), and TFRC (transferrin receptor). Reduced SQSTM1 protein expression was also observed in aortas of ppargc1a?/- mice and was upregulated by PPARGC1A overexpression, suggesting that SQSTM1 is a direct target of PPARGC1A. Inhibition of autophagy by 3-MA (3 methyladenine), spautin-1 or Atg5 (autophagy related 5) siRNA stimulated senescence. Rapamycin rescued the effect of Atg5 siRNA in Ppargc1a+/+ , but not in ppargc1a?/- VSMCs, suggesting that other targets of MTOR (mechanistic target of rapamycin kinase), in addition to autophagy, also contribute to senescence. Sqstm1 siRNA increased senescence basally and in response to AGT II (angiotensin II) and zinc overload, two known inducers of senescence. Furthermore, Sqstm1 gene deficiency mimicked the phenotype of Ppargc1a depletion by presenting reduced autophagy and increased senescence in vitro and in vivo. Thus, PPARGC1A upregulates autophagy reducing senescence by a SQSTM1-dependent mechanism. We propose SQSTM1 as a novel target in therapeutic interventions reducing senescence.  相似文献   

14.
15.
Autophagy can lead to cell death in response to stress, but it can also act as a protective mechanism for cell survival. We show that TGF-β1 induces autophagy and protects glomerular mesangial cells from undergoing apoptosis during serum deprivation. Serum withdrawal rapidly induced autophagy within 1 h in mouse mesangial cells (MMC) as determined by increased microtubule-associated protein 1 light chain 3 (LC3) levels and punctate distribution of the autophagic vesicle-associated-form LC3-II. We demonstrate that after 1 h there was a time-dependent decrease in LC3 levels that was accompanied by induction of apoptosis, evidenced by increases in cleaved caspase 3. However, treatment with TGF-β1 resulted in induction of the autophagy protein LC3 while suppressing caspase 3 activation. TGF-β1 failed to rescue MMC from serum deprivation-induced apoptosis upon knockdown of LC3 by siRNA and in MMC from LC3 null (LC3−/−) mice. We show that TGF-β1 induced autophagy through TAK1 and Akt activation, and inhibition of PI3K-Akt pathway by LY294002 or dominant-negative Akt suppressed LC3 levels and enhanced caspase 3 activation. TGF-β1 also up-regulated cyclin D1 and E protein levels while down-regulating p27, thus stimulating cell cycle progression. Bafilomycin A1, but not MG132, blocked TGF-β1 down-regulation of p27, suggesting that p27 levels were regulated through autophagy. Taken together, our data indicate that TGF-β1 rescues MMC from serum deprivation-induced apoptosis via induction of autophagy through activation of the Akt pathway. The autophagic process may constitute an adaptive mechanism to glomerular injury by inhibiting apoptosis and promoting mesangial cell survival.  相似文献   

16.
《Autophagy》2013,9(1):100-112
Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-β (Aβ) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aβ levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aβ production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aβ was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aβ production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.  相似文献   

17.
Oh SH  Kim YS  Lim SC  Hou YF  Chang IY  You HJ 《Autophagy》2008,4(8):1009-1019
Although capsaicin, a pungent component of red pepper, is known to induce apoptosis in several types of cancer cells, the mechanisms underlying capsaicin-induced cytotoxicity are unclear. Here, we showed that dihydrocapsaicin (DHC), an analog of capsaicin, is a potential inducer of autophagy. DHC was more cytotoxic than capsaicin in HCT116, MCF-7 and WI38 cell lines. Capsaicin and DHC did not affect the sub-G(1) apoptotic peak, but induced G(0)/G(1) arrest in HCT116 and MCF-7 cells. DHC caused the artificial autophagosome marker GFP-LC3 to redistribute and upregulated expression of autophagy-related proteins. Blocking of autophagy by 3-methyladenine (3MA) as well as siRNA Atg5 induced a high level of caspase-3 activation. Although pretreatment with zVAD completely inhibited caspase-3 activation by 3MA, it did not prevent cell death. DHC-induced autophagy was enhanced by zVAD pretreatment, as shown by increased accumulation of LC3-II protein. DHC attenuated basal ROS levels through catalase induction; this effect was enhanced by antioxidants, which increased both LC3-II expression and caspase-3 activation. The catalase inhibitor 3-amino-1,2,4-triazole (3AT) abrogated DHC-induced expression of LC3-II, overexpression of the catalase gene increased expression of LC3-II protein, and knockdown decreased it. Additionally, DHC-induced autophagy was independent of p53 status. Collectively, DHC activates autophagy in a p53-independent manner and that may contribute to cytotoxicity of DHC.  相似文献   

18.
《Autophagy》2013,9(10):1448-1461
We previously reported that autophagy is upregulated in Prnp-deficient (Prnp0/0) hippocampal neuronal cells in comparison to cellular prion protein (PrPC)-expressing (Prnp+/+) control cells under conditions of serum deprivation. In this study, we determined whether a protective mechanism of PrPC is associated with autophagy using Prnp0/0 hippocampal neuronal cells under hydrogen peroxide (H2O2)-induced oxidative stress. We found that Prnp0/0 cells were more susceptible to oxidative stress than Prnp+/+ cells in a dose- and time-dependent manner. In addition, we observed enhanced autophagy by immunoblotting, which detected the conversion of microtubule-associated protein 1 light chain 3 β (LC3B)-I to LC3B-II, and we observed increased punctate LC3B immunostaining in H2O2-treated Prnp0/0 cells compared with H2O2-treated control cells. Interestingly, this enhanced autophagy was due to impaired autophagic flux in the H2O2-treated Prnp0/0 cells, while the H2O2-treated Prnp+/+ cells showed enhanced autophagic flux. Furthermore, caspase-dependent and independent apoptosis was observed when both cell lines were exposed to H2O2. Moreover, the inhibition of autophagosome formation by Atg7 siRNA revealed that increased autophagic flux in Prnp+/+ cells contributes to the prosurvival effect of autophagy against H2O2 cytotoxicity. Taken together, our results provide the first experimental evidence that the deficiency of PrPC may impair autophagic flux via H2O2-induced oxidative stress.  相似文献   

19.
《Autophagy》2013,9(1):123-136
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63?/? mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

20.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号