首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zacarin EC 《Autophagy》2007,3(5):516-518
Larval salivary glands of bees provide a good model for the study of hormone-induced programmed cell death in Hymenoptera because they have a well-defined secretory cycle with a peak of secretory activity phase, prior to cocoon spinning, and a degenerative phase, after the cocoon spinning. Our findings demonstrate that there is a relationship between apoptosis and autophagy during physiological cell death in these larval salivary glands, that adds evidence to the hypothesis of overlap in the regulation pathways of both types of programmed cell death. Features of autophagy include cytoplasm vacuolation, acid phosphatase activity, presence of autophagic vacuoles and multi-lamellar structures, as well as a delay in the collapse of many nuclei. Features of apoptosis include bleb formation in the cytoplasm and nuclei, with release of parts of the cytoplasm into the lumen, chromatin compaction, and DNA and nucleolar fragmentation. We propose a model for programmed cell death in larval salivary glands of Apis mellifera where autophagy and apoptosis function cooperatively for a more efficient degeneration of the gland secretory cells.  相似文献   

2.
The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin-eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form intermediate between apoptosis and autophagy.  相似文献   

3.
《Autophagy》2013,9(3):359-360
Autophagic cell death is a prominent morphological form of cell death that occurs in diverse animals. Autophagosomes are abundant during autophagic cell death, yet the functional role of autophagy in cell death has been enigmatic. We find that autophagy and the Atg genes are required for autophagic cell death of Drosophila salivary glands. Although caspases are present in dying salivary glands, autophagy is required for complete cell degradation. Further, induction of high levels of autophagy results in caspase-independent autophagic cell death. Our results provide the first in vivo evidence that autophagy and the Atg genes are required for autophagic cell death and confirm that autophagic cell death is a physiological death program that occurs during development.

Addendum to: Berry DL, Baehrecke EH. Growth arrest and autophagy are required for programmed salivary gland cell degradation in Drosophila. Cell 2007; 131:1137-48.  相似文献   

4.
《Autophagy》2013,9(8):1192-1193
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction

during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.  相似文献   

5.
The mechanism of silk formation inApis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.  相似文献   

6.
Steroid regulation of autophagic programmed cell death during development   总被引:18,自引:0,他引:18  
Apoptosis and autophagy are morphologically distinct forms of programmed cell death. While autophagy occurs during the development of diverse organisms and has been implicated in tumorigenesis, little is known about the molecular mechanisms that regulate this type of cell death. Here we show that steroid-activated programmed cell death of Drosophila salivary glands occurs by autophagy. Expression of p35 prevents DNA fragmentation and partially inhibits changes in the cytosol and plasma membranes of dying salivary glands, suggesting that caspases are involved in autophagy. The steroid-regulated BR-C, E74A and E93 genes are required for salivary gland cell death. BR-C and E74A mutant salivary glands exhibit vacuole and plasma membrane breakdown, but E93 mutant salivary glands fail to exhibit these changes, indicating that E93 regulates early autophagic events. Expression of E93 in embryos is sufficient to induce cell death with many characteristics of apoptosis, but requires the H99 genetic interval that contains the rpr, hid and grim proapoptotic genes to induce nuclear changes diagnostic of apoptosis. In contrast, E93 expression is sufficient to induce the removal of cells by phagocytes in the absence of the H99 genes. These studies indicate that apoptosis and autophagy utilize some common regulatory mechanisms.  相似文献   

7.
The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.  相似文献   

8.
Autophagy, a form of programmed cell death (PCD) that is morphologically distinguished from apoptosis, is thought to be as prevalent as apoptosis, at least during development. In insect metamorphosis, the steroid hormone 20-hydroxyecdysone (ecdysone) activates autophagic PCD to eliminate larval structures that are no longer needed. However, in comparison with apoptosis, there are not many studies on the regulation mechanisms of autophagy. To provide a useful model for studying autophagic PCD, I established an in vitro culture system that enables real-time observation of the autophagic cell destruction of Drosophila salivary glands. The new system revealed that de novo gene expression was still required for the destruction of salivary glands dissected from phanerocephalic pupae. This indicates the usefulness of the system for exploring genes that participate in the last processes of autophagic PCD.Edited by N. Satoh  相似文献   

9.
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.Key words: autophagy, Draper, programmed cell death, engulfment, developmentProgrammed cell death is required for animal development and tissue homeostasis. Improper cell death leads to pathologies including autoimmunity and cancer. Several morphological forms of cell death occur during animal development, including apoptosis and autophagic cell death. Autophagic cell death is characterized by the presence of autophagosomes in dying cells that are not known to be engulfed by phagocytes. Autophagic cell death is observed during several types of mammalian developmental cell death, including regression of the corpus luteum and involution of mammary and prostate glands.During macroautophagy (autophagy), cytoplasmic components are sequestered by autophagosomes and delivered to the lysosome for degradation. Autophagy is a cellular response to stress required for survival in response to starvation. Whereas autophagy has been associated with cell death, it is unknown how autophagy is distinguished during cell death and cell survival. Autophagy is induced in Drosophila in response to starvation in the fat body where it promotes cell survival, while autophagy is induced by the steroid hormone ecdysone in salivary glands where it promotes cell death. This allows studies of autophagy in different cell types and in response to different stimuli.Drosophila larval salivary glands die with autophagic cell death morphology and autophagy is required for their degradation. Expression of the caspase inhibitor p35 enhances salivary gland persistence in Atg mutants, suggesting that caspases and autophagy function in parallel during salivary gland degradation. Either activation of caspases or Atg1 misexpression is sufficient to induce ectopic salivary gland clearance. We queried genome-wide microarray data from purified dying salivary glands and noted the induction of engulfment genes, those required for a phagocyte to consume and degrade a dying cell. We also noted few detectable changes in engulfment genes in Drosophila larvae during starvation.We found that Drpr, the Drosophila orthologue of C. elegans engulfment receptor CED-1, is enriched in dying salivary glands, and drpr null mutants have persistent salivary glands. Interestingly, whereas knockdown of drpr in phagocytic blood cells fails to influence salivary gland clearance, expression of drpr-RNAi in salivary glands prevents gland clearance. Drosophila drpr is alternatively spliced to produce three isoforms. We found that drpr-I-specific knockdown prevents salivary gland degradation and Drpr-I expression in salivary glands of drpr null mutants rescues salivary gland persistence. Therefore, drpr is autonomously required for salivary gland clearance. However, how Drpr is induced or activated during hormone-regulated cell death remains to be determined.drpr knockdown fails to influence caspase activation, and caspase inhibitor p35 expression in drpr null mutants enhances salivary gland persistence, suggesting that Drpr functions downstream or parallel to caspases in dying salivary glands. Interestingly, we found that drpr knockdown in salivary glands prevents the formation of GFP-LC3 puncta. Further, Atg1 misexpression in salivary glands of drpr null mutants suppresses salivary gland persistence. drpr is therefore required for autophagy induction in salivary glands, and Atg1 functions downstream of Drpr in this tissue. We found that several other engulfment genes are required for salivary gland degradation. However, the Drpr signaling mechanism leading to autophagy induction in salivary glands remains to be elucidated.We tested whether drpr is a general regulator of autophagy. The Drosophila fat body is a nutrient storage and mobilization organ akin to the mammalian liver, and is a well-established model to study starvation-induced autophagy. We found that drpr-RNAi expression in fat body clone cells fails to prevent GFP-Atg8 puncta formation in response to starvation. Similarly, drpr null fat body clone cells form Cherry-Atg8 puncta after starvation. Strikingly, drpr-RNAi expression in salivary gland clone cells inhibits the formation of GFP-Atg8 puncta. Therefore, drpr is cell-autonomously required for autophagy induction in dying salivary gland cells, but not for autophagy induction in fat body cells after starvation. These findings suggest that distinct signaling mechanisms regulate autophagy in response to nutrient deprivation compared to steroid hormone induction. Little is known about what distinguishes autophagy function in cell survival versus death. It is possible that varying levels of autophagy are induced during specific cell contexts and that high levels of autophagy could overwhelm a cell—leading to cell death. Autophagic degradation of specific cargo, such as cell death inhibitors, could also contribute to cell death.Given recent interest in manipulation of autophagy for therapies, it is possible that factors such as Drpr could be used as biomarkers to distinguish autophagy leading to cell death versus cell survival. While it is generally accepted that augmentation of protein clearance by autophagy during neurodegeneration would be beneficial, the role of autophagy in tumor progression is less clear. For example, monoallelic loss of the human Atg6 homolog beclin 1 is prevalent in human cancers, suggesting that autophagy is a tumorsuppressive mechanism. Thus, autophagy enhancers have been proposed for cancer prevention. However, autophagy occurs in tumor cells as a survival mechanism, and autophagy inhibitors have been proposed for anti-cancer therapies. Understanding how autophagy is regulated in different contexts is critical for appropriate therapeutic strategies.  相似文献   

10.
11.
Programmed cell death is involved with the degeneration/remodeling of larval tissues and organs during holometabolous development. The midgut is a model to study the types of programmed cell death associated with metamorphosis because its structure while degenerating is a substrate for the formation of the adult organ. Another model is the salivary glands from dipteran because their elimination involves different cell death modes. This study aimed to investigate the models of programmed cell death operating during midgut replacement and salivary gland histolysis in Bradysia hygida. We carried out experiments of real‐time observations, morphological analysis, glycogen detection, filamentous‐actin localization, and nuclear acridine orange staining. Our findings allow us to establish that an intact actin cytoskeleton is required for midgut replacement in B. hygida and nuclear condensation and acridine orange staining precede the death of the larval cells. Salivary glands in histolysis present cytoplasmic blebbing, nuclear retraction, and acridine orange staining. This process can be partially reproduced in vitro. We propose that the larval midgut death involves autophagic and apoptotic features and apoptosis is a mechanism involved with salivary gland histolysis.  相似文献   

12.
As compared toApis mellifera where only workers have hypopharyngeal glands, inScaptotrigona postica, these glands occur in workers, queens and males. They are composed of two long axial ducts with many unicellular secretory alveoli interconnected by secretory canaliculi. The axial ducts are longer in males than in workers, but the alveolar areas of queens and males are generally smaller. In workers the alveoli have their greatest size in the nurses or middle-aged individuals while in queens and males they are larger in newly emerged individuals. The results indicate that the glands in workers may produce food for the brood as inA. mellifera, since they are well developed in the nurse workers. However, the function of the glands in queens and males remains to be clarified since these individuals have no part in brood care.  相似文献   

13.
Ultrastructural studies have shown that the formation of pigment glands in Gossypium hirsutum L. leaves is a lysigenous process, originating from a cluster of cells in the ground meristem. Various techniques were used here to investigate whether programmed cell death (PCD) plays a critical role in this developmental process. Nuclei of internal cells in the pigment gland‐forming tissue were TUNEL‐positive and DAPI‐negative, suggesting that DNA cleavage is an early event and complete DNA degradation is a late event. Smeared bands and a lack of laddering after gel electrophoresis indicate that DNA cleavage is random. Ultrastructurally, secretory cells in the pigment glands become distorted, nuclei are densely stained, and chromosomes become condensed until completely degraded at late stages. Vacuoles with electron‐dense bodies and membrane‐bound autophagosomes are seen in both secretory and sheath cells, suggesting that autophagy plays a key role in PCD during cytoplasm degradation. Buckling of cell walls, seen at early stages, later leads to a complete breakdown of the walls. Together, these results suggest that PCD plays a critical role in the lysigenous development of pigment glands in G. hirsutum leaves.  相似文献   

14.
15.
16.
In the fully activated hypopharyngeal gland of the worker honeybee, Apis mellifera (Hymenoptera : Apidae), there were numerous electron-dense secretion granules, large secretion masses, free ribosomes, and arrays of endoplasmic reticulum. Injection of juvenile hormone into the honeybee caused crystallization of the secretion granules. After 1 and 7 days following the injection, both free and attached ribosomes were depleted from the cytoplasm. The depletion of ribosomes from the cytoplasm of the hypopharyngeal gland cells was observed only in honeybees infected by Nosema apis after injection of juvenile hormone. The appearance of an increasing number of lysosome-like bodies in the cytoplasm suggests that juvenile hormone activates the lysozymes, which leads to the degeneration of the hypopharyngeal glands.  相似文献   

17.
Autophagic programmed cell death in Drosophila   总被引:5,自引:0,他引:5  
  相似文献   

18.
《Autophagy》2013,9(2):142-144
Bax and Bak, act as a gateway for caspase-mediated cell death. mTOR, an Akt downstream effector, plays a critical role in cell proliferation, growth and survival. The inhibition of mTOR induces autophagy, whereas apoptosis is a minor cell death mechanism in irradiated solid tumors.

We explored possible alternative pathways for cell death induced by radiation in Bax/Bak-/- double knockout (DKO) MEF cells and wild-type cells, and we compared the cell survival: the Bax/Bak-/- cells were more radiosensitive than the wild-type cells. The irradiated cells displayed an increase in the pro-autophagic proteins ATG5-ATG12 and Beclin-1.

These results are surprising in the fact that the inhibition of apoptosis resulted in increasing radiosensitivity; indicating that perhaps autophagy is the cornerstone in the cell radiation sensitivity regulation. Furthermore, irradiation up-regulates autophagic programmed cell death in cells that are unable to undergo Bax/Bak-mediated apoptosis. We hypothesize the presence of a phosphatase—possibly PTEN, an Akt/mTOR negative regulator that can be inhibited by Bax/Bak. This fits with our hypothesis of Bax/Bak as a down-regulator of autophagy.

We are currently conducting experiments to explore the relationship between apoptosis and autophagy. Future directions in research include strategies targeting Bax/Bak in cancer xenografts and exploring novel radiosensitizers targeting autophagy pathways.

Addendum to:

Autophagy for Cancer Therapy through Inhibition of Proapoptotic Proteins and mTOR Signaling

K.W. Kim, R.W. Mutter, C. Cao, J.M. Albert, M. Freeman, D.E. Hallahan and B. Lu

J Biol Chem 2006; Epub ahead of print  相似文献   

19.
《Autophagy》2013,9(1):97-100
It is increasingly recognized that programmed cell death includes not only apoptosis and autophagy, but also other types of nonapoptotic cell death, such as paraptosis, which are all characterized by distinct morphological features. Our findings indicate that all three types of programmed cell death occur in the ovarian nurse cell cluster during late vitellogenesis (formation of the egg yolk) of Bombyx mori (Lepidoptera), whereas middle vitellogenesis is exclusively characterized by the presence of a nonapoptotic type of cell death, known as paraptosis. During middle vitellogenesis, nurse cells exhibit clearly cytoplasmic vacuolization, as revealed by ultrastructural examination performed through conventional light and transmission electron microscopy, while no signs of apoptotic or autophagic features are detectable. Moreover, nurse cells of developmental stages 7, 8 and 9 contain autophagic compartments, as well as apoptotic characteristics, such as condensed chromatin, fragmented DNA and activated caspases, as revealed by in vitro assays. We propose that paraptosis precedes both apoptosis and autophagy during vitellogenesis, since its initial activation is detectable during middle vitellogenesis, whereas no apoptotic nor autophagic features are observed. In contrast, at the late stages of Bombyx mori oogenesis, paraptosis, autophagy and apoptosis operate synergistically, resulting in a more efficient elimination of the degenerated nurse cells.

Addendum to: Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419–28.  相似文献   

20.
Caspases function in autophagic programmed cell death in Drosophila   总被引:9,自引:0,他引:9  
Self-digestion of cytoplasmic components is the hallmark of autophagic programmed cell death. This auto-degradation appears to be distinct from what occurs in apoptotic cells that are engulfed and digested by phagocytes. Although much is known about apoptosis, far less is known about the mechanisms that regulate autophagic cell death. Here we show that autophagic cell death is regulated by steroid activation of caspases in Drosophila salivary glands. Salivary glands exhibit some morphological changes that are similar to apoptotic cells, including fragmentation of the cytoplasm, but do not appear to use phagocytes in their degradation. Changes in the levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin and nuclear Lamins precede salivary gland destruction, and coincide with increased levels of active Caspase 3 and a cleaved form of nuclear Lamin. Mutations in the steroid-regulated genes beta FTZ-F1, E93, BR-C and E74A that prevent salivary gland cell death possess altered levels and localization of filamentous Actin, alpha-Tubulin, alpha-Spectrin, nuclear Lamins and active Caspase 3. Inhibition of caspases, by expression of either the caspase inhibitor p35 or a dominant-negative form of the initiator caspase Dronc, is sufficient to inhibit salivary gland cell death, and prevent changes in nuclear Lamins and alpha-Tubulin, but not to prevent the reorganization of filamentous Actin. These studies suggest that aspects of the cytoskeleton may be required for changes in dying salivary glands. Furthermore, caspases are not only used during apoptosis, but also function in the regulation of autophagic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号