首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective and accurate communication of scientific findings is essential. Unfortunately, scientists are not always well trained in how to best communicate their results with other scientists nor do all appreciate the importance of speaking with the public. Here, we provide an example of how the development of oral communication skills can be integrated with research experiences at the undergraduate level. We describe our experiences developing, running, and evaluating a course for undergraduates that complemented their existing undergraduate research experiences with instruction on the nature of science and intensive training on the development of science communication skills. Students delivered science talks, research monologues, and poster presentations about the ecological and evolutionary research in which they were involved. We evaluated the effectiveness of our approach using the CURE survey and a focus group. As expected, undergraduates reported strong benefits to communication skills and confidence. We provide guidance for college researchers, instructors, and administrators interested in motivating and equipping the next generation of scientists to be excellent science communicators.  相似文献   

2.
Troy A. Ladine 《Evolution》2009,2(3):386-392
Students at private Christian colleges tend to have a viewpoint that incorporates faith and belief in God. Whether due to misconceptions about evolution, lack of knowledge of the nature of science, or belief that their faith cannot allow them to accept evolution, there tends to be a great deal of confusion about evolution. This study investigates the attitudes toward evolution of students at a small Christian liberal arts university located in east Texas (East Texas Baptist University, ETBU) and how they would feel most comfortable being approached about evolution in the college science classroom. The majority of students at ETBU are from either Texas or Louisiana. In high school, both states require at least one science course to be taken and evolution to be taught at some level of understanding. Students show a fair understanding that science includes only naturalistic explanations . However, a greater number of science courses and maturity level of the student resulted in significant differences (P = 0.0001 and P = 0.002, respectively) in the understanding of science. Nevertheless, there was a general assertion that God should be included in the definition of science by the majority of students (64.4%), indicating a misunderstanding of the nature of science. Students responded that they would be most comfortable with being approached in the classroom about evolution through the presentation of the science supporting evolution (19.6%), and being shown how creationism and intelligent design are not science (29.8%). A number of students responded that the professor should accept creationism and intelligent design as science and teach them as such (38.2%). This paper will present methods to address students that respond to evolution in this manner.  相似文献   

3.
In this study we designed, implemented, and evaluated an outreach programme for high-school biology students rooted in the ‘science as inquiry’ approach. Accordingly, students learn about science from experts in the field, as well as through in-class exposure to the history and philosophy of science. Our sample consisted of 11th graders (n?=?497), ages 16–17, attending advanced biology classes. Our goal was to determine whether this programme had a significant effect on students’ understanding of the ‘nature of science’ (NOS) and on their attitudes towards science. Using a controlled pre-post research design, we asked participants to complete a Likert-like questionnaire. Also, we conducted post-programme semi-structured interviews with 35 of the participants. Results show that completion of the programme significantly enhanced participants’ NOS understanding and improved their attitudes towards science. Participants expressed a deep level of NOS understanding and explicitly stated that the field visits to experts’ labs had changed their attitude towards science. We believe that our outreach programme can be adapted for teaching other sciences and for societies worldwide, as long as there is access to university laboratories and researchers willing to interact with young citizens and potential future scientists.  相似文献   

4.
Many students reject evolutionary theory, whether or not they adequately understand basic evolutionary concepts. We explore the hypothesis that accepting evolution is related to understanding the nature of science. In particular, students may be more likely to accept evolution if they understand that a scientific theory is provisional but reliable, that scientists employ diverse methods for testing scientific claims, and that relating data to theory can require inference and interpretation. In a study with university undergraduates, we find that accepting evolution is significantly correlated with understanding the nature of science, even when controlling for the effects of general interest in science and past science education. These results highlight the importance of understanding the nature of science for accepting evolution. We conclude with a discussion of key characteristics of science that challenge a simple portrayal of the scientific method and that we believe should be emphasized in classrooms.  相似文献   

5.
Herrera C 《Bioethics》2008,22(3):137-146
Observers who note the increasing popularity of bioethics discussions often complain that the social sciences are poorly represented in discussions about things like abortion and stem-cell research. Critics say that bioethicists should be incorporating the methods and findings of social scientists, and should move towards making the discipline more empirically oriented. This way, critics argue, bioethics will remain relevant, and truly reflect the needs of actual people. Such recommendations ignore the diversity of viewpoints in bioethics, however. Bioethics can gain much from the methods and findings from ethnographies and similar research. But it is misleading to suggest that bioethicists are unaware of this potential benefit. Not only that, bioethicists are justified in having doubts about the utility of the social science approach in some cases. This is not because there is some inherent superiority in non-empirical approaches to moral argument. Rather, the doubts concern the nature of the facts that the sciences would provide. Perhaps the larger point is that disagreements about the relationship between facts and normative arguments should be seen as part of the normal inquiry in bioethics, not evidence that reform is needed.  相似文献   

6.
Modeled on Medawar's Advice to a Young Scientist [Medawar, P.B., 1979. Advice to a Young Scientist. Basic Books, New York], this article provides advice to behavioral and cognitive scientists. An important guiding principle is that the study of comparative cognition and behavior are natural sciences tasked with explaining nature. The author advises young scientists to begin with a natural phenomenon and then bring it into the laboratory, rather than beginning in the laboratory and hoping for an application in nature. He suggests collaboration as a way to include research outside the scientist's normal competence. He then discusses several guides to good science. These guides include Tinbergen's [Tinbergen, N., 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410-433. This journal was renamed Ethology in 1986. Also reprinted in Anim. Biol. 55, 297-321, 2005] four "why" questions, Platt's [Platt, J.R., 1964. Strong inference. Science 146, 347-353, (http://weber.ucsd.edu/~jmoore/courses/Platt1964.pdf)] notion of strong inference using multiple alternative hypotheses, and the idea that positive controls help scientists to follow Popper's [Popper, K.R., 1959. The Logic of Scientific Discovery. Basic Books, New York, p. 41] advice about disproving hypotheses. The author also recommends Strunk and White's [Strunk, W., White, E.B., 1979. The Elements of Style, third ed. Macmillan, New York] rules for sound writing, and he provides his personal advice on how to use the anticipation of peer review to improve research and how to decode editors' and reviewers' comments about submitted articles.  相似文献   

7.
Despite increasing awareness of the ways in which non-epistemic values play roles in science, many scientists remain reluctant to acknowledge values at stake in their own work. Even when research clearly relates to risk assessment and establishing public policy, contexts in which the presence of values is less likely to be contentious, scientists tend to present such research as merely involving empirical questions about what the evidence is. As a result, debates over policy-related science tend to be framed as purely epistemic debates over the state of the evidence. We argue that this neglects the important ways that ethical and social values play legitimate roles in judgments about what we take to be evidence for a particular policy. Using the case of recent disputes about the relative safety of home birth, we argue that although the debate has been framed as a purely scientific one about the empirical evidence for home birth, it actually involves disagreements about underlying value assumptions. If our claims are correct, then in order to move the debate forward, scientists will need to engage in a critical discussion about the values at stake.  相似文献   

8.
As the history of science has developed as a professional intellectualdiscipline, it has had and will continue to have an importantrole in defining science and its place in our culture. Suchdefinitions should be based on as much information as possible.Scientists can help supply some of this information throughparticipation in symposia on the history of science. In addition,scientists can learn much about the nature of their disciplineby becoming aware of the concepts of science which are derivedfrom the careful analysis of its history. Efforts should bemade to bring historians of science and scientists togetherfor their mutual benefit.  相似文献   

9.
It is important to demonstrate evolutionary principles in such a way that they cannot be countered by creation science. One such way is to use creation science itself to demonstrate evolutionary principles. Some creation scientists use classic multidimensional scaling (CMDS) to quantify and visualize morphological gaps or continuity between taxa, accepting gaps as evidence of independent creation and accepting continuity as evidence of genetic relatedness. Here, I apply CMDS to a phylogenetic analysis of coelurosaurian dinosaurs and show that it reveals morphological continuity between Archaeopteryx, other early birds, and a wide range of nonavian coelurosaurs. Creation scientists who use CMDS must therefore accept that these animals are genetically related. Other uses of CMDS for evolutionary biologists include the identification of taxa with much missing evolutionary history and the tracing of the progressive filling of morphological gaps in the fossil record through successive years of discovery.  相似文献   

10.
Hoskins SG  Stevens LM  Nehm RH 《Genetics》2007,176(3):1381-1389
CREATE (consider, read, elucidate hypotheses, analyze and interpret the data, and think of the next experiment) is a new method for teaching science and the nature of science through primary literature. CREATE uses a unique combination of novel pedagogical tools to guide undergraduates through analysis of journal articles, highlighting the evolution of scientific ideas by focusing on a module of four articles from the same laboratory. Students become fluent in the universal language of data analysis as they decipher the figures, interpret the findings, and propose and defend further experiments to test their own hypotheses about the system under study. At the end of the course students gain insight into the individual experiences of article authors by reading authors' responses to an e-mail questionnaire generated by CREATE students. Assessment data indicate that CREATE students gain in ability to read and critically analyze scientific data, as well as in their understanding of, and interest in, research and researchers. The CREATE approach demystifies the process of reading a scientific article and at the same time humanizes scientists. The positive response of students to this method suggests that it could make a significant contribution to retaining undergraduates as science majors.  相似文献   

11.
In September 2013, graduate students from the Yale Immunobiology Department hosted the second Yale Immunobiology Student Symposium. It was an eclectic and thought-provoking event that encouraged scientists to think outside the box both in their research and in their endeavors outside of the laboratory. The speakers ranged from a government representative to a New York Times science journalist and included four research scientists at the cutting-edge in their field. Speakers discussed their current research, from the role of our gut microbiota in causing colorectal cancers to the biochemical modifications in histone tails that give rise to our unique human biology. The overarching message was to let scientists, especially those of the younger generation, know how to approach, think, and talk about science.  相似文献   

12.
Perspective: evolution's struggle for existence in America's public schools   总被引:1,自引:1,他引:0  
The ongoing creation-evolution controversy in North America thrives on the widespread special creationist beliefs of a significant portion of the public. Creation science supports a literal interpretation of the Judeo-Christian Bible, an earth that is no more than 10.000 years old and created ex nihilo in six days by a monotheistic God, with no new kinds arising since the period of creation, and with a single flood of staggering force shaping layers of rocks and trapping the organisms fossilized within them. Despite decisions in numerous court cases that specifically exclude creationism and creation science from primary and secondary biology classes in America's public schools, creationists now work locally to minimize or remove evolution from science teaching standards. The nationally organized movement to resist the teaching of evolution has proven highly effective, influencing state and district school boards in addition to individual teachers and schools. Thus, if teaching about evolution and the nature of science is to survive in America's primary and secondary schools, scientists must likewise work with teachers and reach out to state and local school boards. In this perspective we outline the typical creationist arguments we encounter from students, teachers, school board members, and neighbors. We explain briefly how knowledge of both microevolution and macroevolution is important in medicine, agriculture, and biotechnology. We describe a science education controversy that arose within our own school district, how we responded, and what we learned from it. Finally, we argue that even modest outreach efforts to science teachers will be richly repaid.  相似文献   

13.
Applying scientific knowledge to confront societal challenges is a difficult task, an issue known as the science–practice gap. In Ecology and Conservation, scientific evidence has been seldom used directly to support decision‐making, despite calls for an increasing role of ecological science in developing solutions for a sustainable future. To date, multiple causes of the science–practice gap and diverse approaches to link science and practice in Ecology and Conservation have been proposed. To foster a transparent debate and broaden our understanding of the difficulties of using scientific knowledge, we reviewed the perceived causes of the science–practice gap, aiming to: (i) identify the perspectives of ecologists and conservation scientists on this problem, (ii) evaluate the predominance of these perspectives over time and across journals, and (iii) assess them in light of disciplines studying the role of science in decision‐making. We based our review on 1563 sentences describing causes of the science–practice gap extracted from 122 articles and on discussions with eight scientists on how to classify these sentences. The resulting process‐based framework describes three distinct perspectives on the relevant processes, knowledge and actors in the science–practice interface. The most common perspective assumes only scientific knowledge should support practice, perceiving a one‐way knowledge flow from science to practice and recognizing flaws in knowledge generation, communication, and/or use. The second assumes that both scientists and decision‐makers should contribute to support practice, perceiving a two‐way knowledge flow between science and practice through joint knowledge‐production/integration processes, which, for several reasons, are perceived to occur infrequently. The last perspective was very rare, and assumes scientists should put their results into practice, but they rarely do. Some causes (e.g. cultural differences between scientists and decision‐makers) are shared with other disciplines, while others seem specific to Ecology and Conservation (e.g. inadequate research scales). All identified causes require one of three general types of solutions, depending on whether the causal factor can (e.g. inadequate research questions) or cannot (e.g. scientific uncertainty) be changed, or if misconceptions (e.g. undervaluing abstract knowledge) should be solved. The unchanged predominance of the one‐way perspective over time may be associated with the prestige of evidence‐based conservation and suggests that debates in Ecology and Conservation lag behind trends in other disciplines towards bidirectional views ascribing larger roles to decision‐makers. In turn, the two‐way perspective seems primarily restricted to research traditions historically isolated from mainstream conservation biology. All perspectives represented superficial views of decision‐making by not accounting for limits to human rationality, complexity of decision‐making contexts, fuzzy science–practice boundaries, ambiguity brought about by science, and different types of knowledge use. However, joint knowledge‐production processes from the two‐way perspective can potentially allow for democratic decision‐making processes, explicit discussions of values and multiple types of science use. To broaden our understanding of the interface and foster productive science–practice linkages, we argue for dialogue among different research traditions within Ecology and Conservation, joint knowledge‐production processes between scientists and decision‐makers and interdisciplinarity across Ecology, Conservation and Political Science in both research and education.  相似文献   

14.
During the past hundred years or so, those scholars studying science have isolated themselves as much as possible from scientists as well as from workers in other disciplines who study science. The result of this effort is history of science, philosophy of science and sociology of science as separate disciplines. I argue in this paper that now is the time for these disciplinary boundaries to be lowered or at least made more permeable so that a unified discipline of Science Studies might emerge. I discuss representative problems that stand in the way of such an integration. These problems may seem so formidable in the abstract that no one in their right mind would waste their time trying to bring about a unified field of Science Studies. However, those of us who limit ourselves to the study of the biological sciences have already formed a society in which workers from all disciplines can share their expertise -- the International Society for the History, Philosophy and Social Studies of Science.  相似文献   

15.
2015年中国植物科学若干领域重要研究进展   总被引:3,自引:2,他引:1  
2015年中国植物科学研究处于飞速发展的态势, 主要表现在中国植物生命科学家在国际顶级学术刊物发表文章的数量呈现出明显的优势。中国科学家在植物学诸多领域取得了骄人的成果, 如高等植物PSI与捕光天线的超分子复合物晶体结构的解析、水稻感知和耐受寒害机制、乙烯信号转导分子机制研究等。2015年中国生命科学领域十大进展中, 植物科学领域有两项成果入选。值得一提的是, 中国本土科学家因青蒿素的发现与抗疟疾药物新疗法的开创首次获得自然科学领域的诺贝尔奖, 标志着中国植物化学和中药学对人类健康事业的巨大贡献受到国际高度关注, 也标志着中国科学家围绕国家重大需求开展科学技术问题研究模式的有效性和影响力。中国植物科学从跟踪、并行, 逐渐迈入领跑学科发展的方阵。该文对2015年中国本土植物科学若干领域取得的重要研究成果进行了概括性评述, 旨在全面追踪当前中国植物科学领域发展的最新前沿和热点事件, 并与国内读者分享我国科学家所取得的杰出成就。  相似文献   

16.
Citizen science has grown rapidly in popularity in recent years due to its potential to educate and engage the public while providing a means to address a myriad of scientific questions. However, the rise in popularity of citizen science has also been accompanied by concerns about the quality of data emerging from citizen science research projects. We assessed data quality in the online citizen scientist platform Chimp&See, which hosts camera trap videos of chimpanzees (Pan troglodytes) and other species across Equatorial Africa. In particular, we compared detection and identification of individual chimpanzees by citizen scientists with that of experts with years of experience studying those chimpanzees. We found that citizen scientists typically detected the same number of individual chimpanzees as experts, but assigned far fewer identifications (IDs) to those individuals. Those IDs assigned, however, were nearly always in agreement with the IDs provided by experts. We applied the data sets of citizen scientists and experts by constructing social networks from each. We found that both social networks were relatively robust and shared a similar structure, as well as having positively correlated individual network positions. Our findings demonstrate that, although citizen scientists produced a smaller data set based on fewer confirmed IDs, the data strongly reflect expert classifications and can be used for meaningful assessments of group structure and dynamics. This approach expands opportunities for social research and conservation monitoring in great apes and many other individually identifiable species.  相似文献   

17.
The use of creativity in science practices is many times lost on secondary students. Creativity is seen as something central to the arts and humanities, but tangential at best in the sciences. However, an examination of many great scientific discoveries and the work of everyday contemporary scientists shows the depth and breadth of the use of creativity in the scientific process. Creating a Bubble is an activity that can be used in a secondary classroom to help students understand not only the importance of creativity in science practices, but also the role of communication, the open-endedness of scientific endeavors, and the use of others’ ideas. Students are given a straw, Styrofoam cup, and dish soap and asked to create a big bubble consistently. At first, the techniques that are used produce many small bubbles. Eventually, someone asks how big a big bubble is. Armed with the knowledge that a big bubble is at least 33?cm (13-inches) in diameter, students become very creative in the techniques they try. They learn from each other and eventually are successful in their quest. Frustration and persistence are also key ingredients along their journey.  相似文献   

18.
The Wallacean deficit continues to be a challenge to species distribution modelling. Although some authors have suggested that data collected by citizen scientists can be relevant for a better understanding of biodiversity, to our knowledge, no work has quantitatively tested the equivalence between scientific and citizen science data. Here, we investigate the hypothesis that data collected by citizen scientists can be equivalent to data collected by professional scientists when generating species spatial distribution models. For 42 bird species in the Cerrado region we generated and compared species distribution models based on three data sources: (1) scientific data, (2) citizen science data and (3) sample size corrected citizen science data. To test our hypothesis, we compared the equivalence of these datasets. We rejected the hypothesis of equivalence for about one-third (38%) of the evaluated species, revealing that, for most of the species considered, the models generated were equivalent irrespective of the data set used. The distances between centroids of the models that were equivalent were on average smaller than the distances between non-equivalent models. Also, the direction of change in the models showed no pattern, with no trend towards more populated regions. Our results show that the use of data collected by citizen scientists can be an ally in filling the Wallacean deficit gap. In fact, the lack of use of this wide range of data collected by citizen scientists seems to be an unjustified caution. We indicate the potential of using citizen science data for modelling the distribution of species, mainly due to the large set of data collected, which is impracticable for scientists alone to collect. Conservation measures will be favoured by the union of professional and amateur data, aiming for a better understanding of species distribution and, consequently, biodiversity conservation.  相似文献   

19.
The biodiversity sciences represent the disciplines of whole-organism biology, including systematics, ecology, population biology, behaviour and the fields of comparative biology. The biodiversity sciences are critically important to society because it is knowledge of whole-organisms that is essential for managing and conserving the world's species. Because of an acceleration in environmental degradation and global biodiversity loss in recent decades, the need for the biodiversity sciences has never been more urgent. Yet, biodiversity science is not well supported relative to other fields of science, and thus the need for knowledge about organisms and their environment is far outstripping biologists' ability to provide it. National and international capacity for biodiversity science must therefore be increased substantially. Each nation should establish a national biodiversity research programme coordinated across all government agencies. An international biodiversity research programme should also be established, perhaps with an organizational structure that parallels the International Geosphere-Biosphere Programme. Biodiversity scientists must assume a leadership role in educating the public and bringing about policy changes that will enhance our understanding of the world's species and their ecosystems.  相似文献   

20.
以微生物发展史贯穿教学, 在教学过程中穿插中外科学家对学科的贡献及科学研究的艰辛历程, 不仅提高了学生的学习兴趣, 而且使其对科学研究有了初步认识。80%以上的学生取得较好的成绩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号