首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Simultaneous equilibria calculations were completed for seven aqueous zinc-ligand systems: zinc citrate plus either glycine, alanine, or serine, and zinc succinate plus either glycine, alanine, or serine, and zinc oxalate plus glycine. Mixed-ligand complexes were predicted for all but the zinc citrate-glycine system, and the proportion tends to peak around 5 molar equivalents of amino acid. Potential bioavailability of zinc appears to be increased by the inclusion of amino acids in solution, roughly in parallel with the increase in solubility of the zinc salt. Therefore, measurement of the change in solubility caused by addition of amino acids to aqueous solution gives qualitative insight to the potential increase in bioavailability of the metal ion, and mixed-ligand complexes are a significant proportion of the complexes present in solution.  相似文献   

2.
Abstract

Addition of amino acids, glycine, alanine, and serine, to poorly soluble copper(II) salts [copper(II) citrate and copper(II) succinate] all increase solubility of the copper(II) salts. Relative increases in solubility follow the polarity trend in the selected amino acids, with serine creating the greatest increase in solubility. Simultaneous equilibria calculations indicate the formation of mixed-ligand complexes in the copper(II) succinate–amino acid systems, the first time such mixed-ligand complexes have been observed. In contrast, mixed-ligand complexes are not predicted in the copper(II) citrate–amino acid systems. Potential bioavailability of copper(II) appears to be increased by the inclusion of amino acids in solution, roughly in parallel with the increase in solubility of the copper(II) salt. Therefore, measurement of the change in solubility caused by addition of amino acids to aqueous solution gives qualitative insight to the potential increase in bioavailability of the metal ion.  相似文献   

3.
Dark Respiration during Photosynthesis in Wheat Leaf Slices   总被引:6,自引:2,他引:4       下载免费PDF全文
The metabolism of [14C]succinate and acetate was examined in leaf slices of winter wheat (Triticum aestivum L. cv Frederick) in the dark and in the light (1000 micromoles per second per square meter photosynthetically active radiation). In the dark [1,4-14C]succinate was rapidly taken up and metabolized into other organic acids, amino acids, and CO2. An accumulation of radioactivity in the tricarboxylic acid cycle intermediates after 14CO2 production became constant indicates that organic acid pools outside of the mitochondria were involved in the buildup of radioactivity. The continuous production of 14CO2 over 2 hours indicates that, in the dark, the tricarboxylic acid cycle was the major route for succinate metabolism with CO2 as the chief end product. In the light, under conditions that supported photorespiration, succinate uptake was 80% of the dark rate and large amounts of the label entered the organic and amino acids. While carbon dioxide contained much less radioactivity than in the dark, other products such as sugars, starch, glycerate, glycine, and serine were much more heavily labeled than in darkness. The fact that the same tricarboxylic acid cycle intermediates became labeled in the light in addition to other products which can acquire label by carboxylation reactions indicates that the tricarboxylic acid cycle operated in the light and that CO2 was being released from the mitochondria and efficiently refixed. The amount of radioactivity accumulating in carboxylation products in the light was about 80% of the 14CO2 release in the dark. This indicates that under these conditions, the tricarboxylic acid cycle in wheat leaf slices operates in the light at 80% of the rate occurring in the dark.  相似文献   

4.
It has been demonstrated in several diving vertebrates that succinate, a component of the Krebs cycle, accumulates in blood during breath-hold dives. The production of succinate is thought to result from amino acid catabolism. Our purpose was to determine whether succinate accumulation occurs in man during muscular activity requiring anaerobic energy contribution. Experiments using an endurance athlete included apneic work on an underwater ergometer and treadmill running to exhaustion. During 1 min breath-hold [(V)\dot]\dot V O2max, venous succinate increased from 42 [(V)\dot]\dot V O2max and increased succinate from a similar resting value to 93 M×10–6. Increases in alanine, lactate, and pyruvate were observed for both types of exercise. The findings confirm that succinate accumulation also occurs in man. It was suggested that amino acid catabolism may provide a source of anaerobic energy production in addition to glycolysis. However, the importance of the proposed energy pathway remains to be quantified.  相似文献   

5.
The Na+/dicarboxylate cotransporters from mouse (mNaDC1) and rabbit (rbNaDC1) differ in their ability to handle adipate, a six-carbon terminal dicarboxylic acid. The mNaDC1 and rbNaDC1 amino acid sequences are 75% identical. The rbNaDC1 does not transport adipate and only succinate produced inward currents under two-electrode voltage clamp. In contrast, oocytes expressing mNaDC1 had adipate-dependent inward currents that were about 60% of those induced by succinate. In order to identify domains involved in adipate transport, we examined the functional properties of a series of chimeric transporters made between mouse and rabbit NaDC1. We find that multiple transmembrane helices (TM), particularly TM 8, 9, and 10, are involved in adipate transport. In TM 10 there is only one amino acid difference between the two proteins, corresponding to Ala-504 in mouse and Ser-512 in rabbit NaDC1. The mNaDC1-A504S mutant had decreased adipate-dependent currents relative to succinate-dependent currents and an increase in the K0.5 for both succinate and glutarate. We conclude that multiple amino acids from TM 8, 9 and 10 contribute to the transport of adipate in NaDC1. Furthermore, Ala-504 in TM 10 is an important determinant of K0.5 for both adipate and succinate.  相似文献   

6.
Abstract

The B3LYP/6–311+G(d,p) method and three ONIOM extrapolation methods ONI-OM (B3LYP/6–311+G(d,p): AM1); ONIOM(B3LYP/6–311+G(d,p): MNDO); ONIOM (B3LYP/6–311+G(d,p): HF/3-21G(d)) were used to characterize the complexes of Zn2+ cation with anionic sulfonylated amino acid hydroxamates (RSO2NH-AA-CON(-)OH), possessing an unsubstituted RSO2NH—amino acyl moiety. According to the R moiety we distinguish between pentafluorophenyl and 4-methoxyphenyl derivates. The amino acid hydroxamates included in the study were the Gly, Ala, and Leu derivates. Of the inhibitors investigated, the weakest zinc affinity exhibits the pentafluorophenyl derivate with Gly amino acid and the strongest affinity the 4-methoxyphenyl derivate with Leu amino acid. The inhibitors form bidentate coordination bonds with the zinc cation by means of the sulfonyl oxygen and the ionized hydroxamate nitrogen atoms, respectively. The zinc affinities computed using the B3LYP/6–311 +G(d,p)//HF/6–31 +G(d,p) method are in very good agreement with the full density functional theory (DFT) B3LYP/6–311+G(d,p)//B3LYP/6- 311+G(d,p) method and this method can be adopted to model larger complexes of inhibitors with the active site of carbonic anhydrase.  相似文献   

7.
BackgroundTumor necrosis factor interacting protein (TRAIP/TRIP) is an important cell-signaling molecule that prevents the TNF-induced-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation via direct interaction with TRAF 2 protein. TRAIP is a crucial downstream signaling molecule, implicated in several signaling pathways. Due to these multifunctional effects, TRAIP is more related to cellular mitosis, chromosome segregation, and DNA damage response. Tumor necrosis factor interacting protein is a downstream signaling molecule that contains a RING domain with E3 ubiquitin ligase activity at the N terminal side followed by coiled-coil and C terminal leucine zipper domain. Human TRAIP is constituted of 469 amino acids with 76% sequence similarity with the mouse TRAIP protein. Although, the main inhibitory function of TRAIP has been known for decades, however, in vitro interaction of TRAIPCC domain with RAP80 Zinc finger motif has not been reported yet. Besides, RAP80, the binding partner of TRAIPCC protein has been implicated in DNA damage response.ResultsOur in vitro study shows that the TRAIP CC (64–166) associates with the RAP80 zinc finger of corresponding amino acid 490–584. However, TRAIP CCLZ (66–260) and TRAIP RINGCC (1 = 157) failed to interact with the RAP80 zinc finger of corresponding amino acid 490–584. The current study reinforces TRAIP CC (64–166) and RAP80 zinc finger of corresponding amino acid 490–584 associates to form a complex. Moreover, SDS PAGE arbitrated the homogeneity of RAP80 Zinc finger and TRAIP CC of corresponding amino acid 490–584 and 64–166, respectively.ConclusionIn vitro, a specific interaction was observed between the TRAIP CC (64–166) and the RAP80 zinc finger of the corresponding amino acid 490–584 and a specific binding area of the RAP80 zinc finger motif were investigated. The TRAIPCC region is required for the complex to bind to the RAP80-Zn finger motif. This strategy may be necessary for the RAP80 zinc finger activity to the TRAIP CC protein.  相似文献   

8.
In the cyanobacterium Anabaena cylindrica lactate accumulated in large amounts when the cells were exposed to light. The presence or absence of oxygen, or a change in CO2 concentration did not affect the lactate accumulation. The cellular succinate level also increased in the light when CO2 was supplied at the high concentration of 1%. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), an inhibitor of photosynthetic electron flow, inhibited the increase in the concentration of lactate and succinate. Photosynthesis is a prerequisite for the increase of these organic acids. Thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase, inhibited the increase of succinate, suggesting that the succinate is formed via fumarate by the reverse of reactions of tricarboxylic acid (TCA) cycle. Upon addition of ammonium to the cell suspension in the light under high CO2 concentration, the increases in the concentrations of lactate and succinate were inhibited while those of glutamine, glutamate and aspartate were stimulated. Ammonium apparently changed the products of metabolism of pyruvate and oxaloacetate from lactate and succinate to amino acids.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - TTFA thenoyltrifluoroacetone - PCA perchloric acid  相似文献   

9.
Corynebacterium glutamicum is well known as an important industrial amino acid producer. For a few years, its ability to produce organic acids, under micro‐aerobic or anaerobic conditions was demonstrated. This study is focused on the identification of the culture parameters influencing the organic acids production and, in particular, the succinate production, by this bacterium. Corynebacterium glutamicum 2262, used throughout this study, was a wild‐type strain, which was not genetically designed for the production of succinate. The oxygenation level and the residual glucose concentration appeared as two critical parameters for the organic acids production. The maximal succinate concentration (4.9 g L?1) corresponded to the lower kLa value of 5 h?1. Above 5 h?1, a transient accumulation of the succinate was observed. Interestingly, the stop in the succinate production was concomitant with a lower threshold glucose concentration of 9 g L?1. Taking into account this threshold, a fed‐batch culture was performed to optimize the succinate production with C. glutamicum 2262. The results showed that this wild‐type strain was able to produce 93.6 g L?1 of succinate, which is one of the highest concentration reported in the literature.  相似文献   

10.
Abstract

Beryllium ion elicits p53-mediated cell cycle arrest in some types of human cancer cells, and it is a potent inhibitor of GSK3 kinase activity. Paradoxically, Be2+ is regarded to have almost negligible aqueous solubility at physiological pH, due to precipitation as Be(OH)2. This study demonstrates that the interaction of Be2+ with serum proteins greatly increases its effective solubility. In typical serum-supplemented mammalian cell culture medium, Be2+ was soluble up to about 0.5?mM, which greatly exceeds the concentration needed for biological activity. Some biochemical studies require protein-free Be2+ solutions. In such cases, the inclusion of a specific inorganic counterion, sulfate, increased solubility considerably. The role of sulfate as a solubility-enhancing factor became evident during preparation of buffered solutions, as the apparent solubility of Be2+ depended on whether H2SO4 or a different strong acid was used for pH adjustment. The binding behavior of Be2+ observed via isothermal titration calorimetry was affected by the inclusion of sodium sulfate. The data reflect a “Diverse Ion Effect” consistent with ion pair formation between solvated Be2+ and sulfate. These insights into the solubility behavior of Be2+ at physiological and near-physiological pH will provide guidance to assist sample preparation for biochemical studies.  相似文献   

11.
Five new copper and zinc heteroleptic complexes with saccharin and aminoacids with general stoichiometry Na2[M(sac)2(aa)2]⋅nH2O (M denotes Cu or Zn, sac the saccharinate ion, and aa the aminoacids) were synthesized and characterized by elemental and thermogravimetric analysis, conductimetric measurements and IR, Raman and UV–vis spectroscopies. In all the complexes, copper and zinc ions coordinated with the aminoacids through the terminal amine and carboxylate residues and with saccharin through the heterocyclic nitrogen atom. Besides, the superoxide dismutase-like activity of the heteroleptic copper complexes was evaluated and compared with the homoleptic copper amino acid complexes with the aim to observe the influence of the saccharin coordination.  相似文献   

12.
BackgroundThe determination of dietary mineral solubility is one of the main steps in the evaluation of their availability for a given species.MethodsThis study proposed an in vitro digestion method (acidic and alkaline hydrolysis). The method was applied to evaluate the solubility of inorganic and organic forms of zinc (Zn), selenium (Se) and manganese (Mn) in salmonid diets. An inorganic mineral (IM) diet was supplemented with zinc sulphate, sodium selenite and manganous sulphate and an organic mineral (OM) diet was supplemented with zinc chelate of glycine, l-selenomethionine and manganese chelate of glycine.ResultsThe solubility of Zn was similar in both diets tested. The amount of soluble Zn was low in the acidic hydrolysis (3–8%) and lower in the alkaline hydrolysis (0.4–2%). The solubility of Se was higher in the OM diet (7–34%) compared with the IM diet (3–12%). Regarding Mn, after the acidic hydrolysis the solubility was higher in the IM diet (6–25%) than the OM diet (4–17%). The in vitro solubility were compared with in vivo availability of Zn, Se and Mn. Data obtained for solubility (%) of Zn, Se and Mn was lower when compared with apparent availability (%) of Zn, Se and Mn.ConclusionData obtained demonstrated that solubility of Zn, Se and Mn was influenced by the mineral chemical form supplemented to the diet and by the gastrointestinal environment. The solubility of Zn, Se and Mn was not comparable with the apparent availability of Zn, Se and Mn. Nevertheless, the effect of the chemical form of the minerals was similar for the solubility of Zn, Se and Mn and the apparent availability of Zn, Se and Mn. Considering the overall results of this study, the in vitro method could replace some of the in vivo studies for a qualitative evaluation but not for a quantitative evaluation.  相似文献   

13.
1. The solubility in water of purified, uncombined casein has previously been reported to be 0.11 gm. in 1 liter at 25°C. This solubility represents the sum of the concentrations of the casein molecule and of the soluble ions into which it dissociates. 2. The solubility of casein has now been studied in systems containing the protein and varying amounts of sodium hydroxide. It was found that casein forms a well defined soluble disodium compound, and that solubility was completely determined by (a) the solubility of the casein molecule, and (b) the concentration of the disodium casein compound. 3. In our experiments each mol of sodium hydroxide combined with approximately 2,100 gm. of casein. 4. The equivalent combining weight of casein for this base is just half the minimal molecular weight as calculated from the sulfur and phosphorus content, and one-sixth the minimal molecular weight calculated from the tryptophane content of casein. 5. From the study of systems containing the protein and very small amounts of sodium hydroxide it was possible to determine the solubility of the casein molecule, and also the degree to which it dissociated as a divalent acid and combined with base. 6. Solubility in such systems increased in direct proportion to the amount of sodium hydroxide they contained. 7. The concentration of the soluble casein compound varied inversely as the square of the hydrogen ion concentration, directly as the solubility of the casein molecule, Su, and as the constants Ka1 and Ka2 defining its acid dissociation. 8. The product of the solubility of the casein molecule and its acid dissociation constants yields the solubility product constant, Su·Ka1·Ka2 = 2.2 x 10–12 gm. casein per liter at 25°C. 9. The solubility of the casein molecule has been estimated from this constant, and also from the relation between the solubility of the casein and the sodium hydroxide concentration, to be approximately 0.09 gm. per liter at 25°C. 10. The product of the acid dissociation constants, Ka1 and Ka2, must therefore be 24 x 10–12N. 11. It is believed that these constants completely characterize the solubility of casein in systems containing the protein and small amounts of sodium hydroxide.  相似文献   

14.
Summary. Azotobacter vinelandii strain ATCC 12837 and Azotobacter chroococcum strain H23 (CECT4435) were tested to grow in N-free or NH4Cl amended chemically defined media, with protocatechuic acid or sodium p-hydroxybenzoate as sole carbon (C) sources at a concentration of 2 mmol/L. Both substrates supported grow at similar rates than bacteria grown in control media amended with 2 mmol/L sodium succinate as C source. The two strains produced aspartic acid, serine, glutamic acid, glycine, hystidine, threonine, arginine, alanine, proline, cysteine, tyrosine, valine, methionine, lysine, isoleucine, leucine and phenylalanine after 72 h of growth in chemically defined media with 2 mmol/L of phenolic compounds or sodium succinate as sole C source amended or unamended with 0.1% (w/v) NH4Cl. Qualitative and quantitative production of all amino acids was not affected by the use of different C and N substrates.  相似文献   

15.
Abstract

RNA ligase active center model compounds-adenylyl-(5′N?)-lysylpeptides were synthesized. The stability of these compounds in aqueous solutions was studied and it was shown, that the carboxyl group of lysine and glutamic acid or hydroxyl group of threonine have no effect upon the hydrolytic mechanism of the adenylyl-(5′N?)-lysylpeptides. This led to conclusion, that the hydrolysis of the AMP-RNA ligase complex is dependant upon other amino acid functional groups, which may be located next to the phosphoamide center, as a result of tertiary protein structure.  相似文献   

16.
More than 90% of the aspartate in a defined medium was metabolized after lactate exhaustion such that 3 mol of aspartate and 1 mol of propionate were converted to 3 mol of succinate, 3 mol of ammonia, 1 mol of acetate, and 1 mol of CO2. This pathway was also evident when propionate and aspartate were the substrates in complex medium in the absence of lactate. In complex medium with lactate present, about 70% of the aspartate was metabolized to succinate and ammonia during lactate fermentation, and as a consequence of aspartate metabolism, more lactate was fermented to acetate and CO2 than was fermented to propionate. The conversion of aspartate to fumarate and ammonia by the enzyme aspartase and subsequent reduction of fumarate to succinate occurred in the five strains of Propionibacterium freudenreichii subsp. shermanii studied. The ability to metabolize aspartate in the presence of lactate appeared to be related to aspartase activity. The specific activity of aspartase increased during and after lactate utilization, and the levels of this enzyme were lower in cells grown in defined medium than levels in those cells grown in complex medium. Under the conditions used, no other amino acids were readily metabolized in the presence of lactate. The possibility that aspartate metabolism by propionibacteria in Swiss cheese has an influence on CO2 production is discussed.  相似文献   

17.
The synthesis of the following oligo- and co-oligopeptides by the liquid-phase method is described: (L -Met)15 (I), [L -Glu(OBzl)]20 (II), (L -Val)8-Gly (IV), (L -Ile)8-Gly (V), (L -Ile)4-Gly-(L -Ile)4 (VI), (L -Ile)4-Pro-(L -Ile)4 (VII), (L -Met)5-L -Pro-(L -Met)5 (VIII), [L -Glu(OBzl)]7-L -Pro-[L -Glu(OBzl)]7 (IX). The oligomers are covalently bound to bifunctional polyethylene glycol (PEG) and monofunctional PEG-M of Mr 5 × 103?2 × 104. Analytical controls were carried out after each step of synthesis in order to ensure quantitative coupling yields. All products could be obtained in high purity as indicated by amino acid analysis, thin-layer chromatography and chiroptical methods. The solubility of the oligomers was strongly enhanced by the presence of the C-terminal PEG group, enabling conformational investigations in a variety of solvents. A significant relationship between conformation and physicochemical properties of the oligopeptides was observed. Oligomers with tendencies to adopt α-helical (I, II) or unordered structures (VI–IX) showed no pronounced change in solubility or coupling kinetics during chain elongation, whereas the onset of a β-structure (IV, V) was paralleled by a drastic decrease in solubility and reactivity of the terminal amino groups. Most notably, the insertion of a proline or glycine in the middle of a β-forming peptide chain (VI, VII) resulted in a considerable increase in solubility compared to the corresponding homo-oligomers. The impact of the conformational properties of a peptide chain on strategic considerations of peptide synthesis in solution is delineated.  相似文献   

18.
Oxidation of [2,3-14C]succinate in the intramitochondrial Krebs cycle was used as a probe to investigate the effect of ammonia on protein incorporation and Krebs cycle oxidation of succinate carbons in isolated rat hepatocytes. At low concentrations of ammonium chloride (0.1 to 0.5 mM) a slight increase in14CO2 formation from [2,3-14C]succinate was observed, however, the stimulatory effect of insulin was significantly reduced. Insulin failed to cause any stimulation of succinate carbons incorporation into hepatocyte protein in the presence of ammonium chloride. Addition of ammonium chloride also depressed the movement of tracer carbons into the gluconeogenesis pathway. The activity of the amphibolic amino acid pool was significantly enhanced by ammonia. The data presented in this paper lend strong support to the Krebs-cycle depletion theory of hepatic coma. They also suggest that reduced mitochondrial Krebs cycle activity caused by increased amphibolic depletion of substrates results in loss of insulin sensitivity in ammonia toxicity.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

19.
Dutta  Shayoni  Madan  Spandan  Sundar  Durai 《BMC genomics》2016,17(13):1037-125
Background

Engineering zinc finger protein motifs for specific binding to double-stranded DNA is critical for targeted genome editing. Most existing tools for predicting DNA-binding specificity in zinc fingers are trained on data obtained from naturally occurring proteins, thereby skewing the predictions. Moreover, these mostly neglect the cooperativity exhibited by zinc fingers.

Methods

Here, we present an ab-initio method that is based on mutation of the key α-helical residues of individual fingers of the parent template for Zif-268 and its consensus sequence (PDB ID: 1AAY). In an attempt to elucidate the mechanism of zinc finger protein-DNA interactions, we evaluated and compared three approaches, differing in the amino acid mutations introduced in the Zif-268 parent template, and the mode of binding they try to mimic, i.e., modular and synergistic mode of binding.

Results

Comparative evaluation of the three strategies reveals that the synergistic mode of binding appears to mimic the ideal mechanism of DNA-zinc finger protein binding. Analysis of the predictions made by all three strategies indicate strong dependence of zinc finger binding specificity on the amino acid propensity and the position of a 3-bp DNA sub-site in the target DNA sequence. Moreover, the binding affinity of the individual zinc fingers was found to increase in the order Finger 1 < Finger 2 < Finger 3, thus confirming the cooperative effect.

Conclusions

Our analysis offers novel insights into the prediction of ZFPs for target DNA sequences and the approaches have been made available as an easy to use web server at http://web.iitd.ac.in/~sundar/zifpredict_ihbe

  相似文献   

20.
The maximal velocity, V, for isocitrate cleavage by isocitrate lysase from Pseudomonas indigofera was dependent on two dissociable groups (pKa's of 6.9 and 8.6). The pH dependence of the pKi for succinate, a product of isocitrate cleavage, implied that a dissociable group (pKa of 6.0) on the enzyme functions in binding succinate. The pKi's for maleate and itaconate (succinate analogs) were similarly pH dependent. The pKi for oxalate, an analog of glyoxylate which is also a product of isocitrate cleavage, was pH independent. In contrast the pKi's of the four-carbon dicarboxylic acid inhibitors, fumarate and meso-tartrate, both of which affect the glyoxylate site, were dependent on a dissociable group on the enzyme-inhibitor complex. Comparison of the pH dependence of the pKm for isocitrate and the pKi for succinate (and succinate analogs) indicated that the binding of isocitrate was dependent on an acidic dissociable group on the enzyme (pKa of 5.8). The pH dependence of the pKi for homoisocitrate was similar. In addition the Ki for succinate and Km for isocitrate were dependent upon Mg2+ concentration. Inhibition by phosphoenolpyruvate, which binds to the succinate site and may regulate isocitrate lyase from P. indigofera, was twice as pH dependent as that for succinate. Two dissociable groups, one on the enzyme (pKa of 5.8) and one on phosphoenolpyruvate (pKa of 6.35), contributed to the pH dependence observed with phosphoenolpyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号