首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/− mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation.  相似文献   

2.
Prompt reperfusion after cerebral ischemia is critical for neuronal survival. Any strategies that extend the limited reperfusion window will be of great importance. Acidic postconditioning (APC) is a mild acidosis treatment that involves inhaling CO2 during reperfusion following ischemia. APC attenuates ischemic brain injury although the underlying mechanisms have not been elucidated. Here we report that APC reinforces ischemia-reperfusion-induced mitophagy in middle cortical artery occlusion (MCAO)-treated mice, and in oxygen-glucose deprivation (OGD)-treated brain slices and neurons. Inhibition of mitophagy compromises neuroprotection conferred by APC. Furthermore, mitophagy and neuroprotection are abolished in Park2 knockout mice, indicating that APC-induced mitophagy is facilitated by the recruitment of PARK2 to mitochondria. Importantly, in MCAO mice, APC treatment extended the effective reperfusion window from 2 to 4 h, and this window was further extended to 6 h by exogenously expressing PARK2. Taken together, we found that PARK2-dependent APC-induced mitophagy renders the brain resistant to ischemic injury. APC treatment could be a favorable strategy to extend the thrombolytic time window for stroke therapy.  相似文献   

3.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

4.
Cerebral ischemia induces massive mitochondrial damage. These damaged mitochondria are cleared, thus attenuating brain injury, by mitophagy. Here, we identified the involvement of BNIP3L/NIX in cerebral ischemia-reperfusion (I-R)-induced mitophagy. Bnip3l knockout (bnip3l?/?) impaired mitophagy and aggravated cerebral I-R injury in mice, which can be rescued by BNIP3L overexpression. The rescuing effects of BNIP3L overexpression can be observed in park2?/? mice, which showed mitophagy deficiency after I-R. Interestingly, bnip3l and park2 double-knockout mice showed a synergistic mitophagy deficiency with I-R treatment, which further highlighted the roles of BNIP3L-mediated mitophagy as being independent from PARK2. Further experiments indicated that phosphorylation of BNIP3L serine 81 is critical for BNIP3L-mediated mitophagy. Nonphosphorylatable mutant BNIP3LS81A failed to counteract both mitophagy impairment and neuroprotective effects in bnip3l?/? mice. Our findings offer insights into mitochondrial quality control in ischemic stroke and bring forth the concept that BNIP3L could be a potential therapeutic target for ischemic stroke, beyond its accepted role in reticulocyte maturation.  相似文献   

5.
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg?1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.  相似文献   

6.
Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.Subject terms: Cell death in the nervous system, Stroke  相似文献   

7.
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a “physiological” HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.  相似文献   

8.
Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro‐inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up‐regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen‐glucose deprivation in brain cells. Persistent up‐regulation of complement component 3 expression was reduced in copper/zinc‐superoxide dismutase transgenic mice, and manganese‐superoxide dismutase knock‐out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N‐tert‐butyl‐α‐phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N‐tert‐butyl‐α‐phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen‐glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.  相似文献   

9.
Activated autophagy/mitophagy has been intensively observed in ischemic brain, but its roles remain controversial. Peroxynitrite (ONOO?), as a representative of reactive nitrogen species, is considered as a critical neurotoxic factor in mediating cerebral ischemia-reperfusion (I/R) injury, but its roles in autophagy/mitophagy activation remain unclear. Herein, we hypothesized that ONOO? could induce PINK1/Parkin-mediated mitophagy activation via triggering dynamin-related protein 1 (Drp1) recruitment to damaged mitochondria, contributing to cerebral I/R injury. Firstly, we found PINK1/Parkin-mediated mitophagy activation was predominant among general autophagy, leading to rat brain injury at the reperfusion phase after cerebral ischemia. Subsequently, increased nitrotyrosine was found in the plasma of ischemic stroke patients and ischemia-reperfused rat brains, indicating the generation of ONOO? in ischemic stroke. Moreover, in vivo animal experiments illustrated that ONOO? was dramatically increased, accompanied with mitochondrial recruitment of Drp1, PINK1/Parkin-mediated mitophagy activation, and progressive infarct size in rat ischemic brains at the reperfusion phase. FeTMPyP, a peroxynitrite decomposition catalyst, remarkably reversed mitochondrial recruitment of Drp1, mitophagy activation, and brain injury. Intriguingly, further study revealed that ONOO? induced tyrosine nitration of Drp1 peptide, which might contribute to mitochondrial recruitment of Drp1 for mitophagy activation. In vitro cell experiments yielded consistent results with in vivo animal experiments. Taken together, all above findings support the hypothesis that ONOO?-induced mitophagy activation aggravates cerebral I/R injury via recruiting Drp1 to damaged mitochondria.  相似文献   

10.
《Autophagy》2013,9(3):310-325
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5–20 mM) and bafilomycin A1 (75–150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50–200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.  相似文献   

11.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

12.
1. We review the biochemical and molecular changes in brain with developing cerebral infarction, based on recent findings in experimental focal cerebral ischemia.2. Occlusion of a cerebral artery produces focal ischemia with a gradual decline of blood flow, differentiating a severely ischemic core where infarct develops rapidly and an area peripheral to the core where the blood flow reduction is moderate (called penumbra). Neuronal injury in the penumbra is essentially reversible but only for several hours. The penumbra area tolerates a longer duration of ischemia than the core and may be salvageable by pharmacological agents such as glutamate antagonists or prompt reperfusion.3. Upon reperfusion, brain cells alter their genomic properties so that protein synthesis becomes restricted to a small number of proteins such as stress proteins. Induction of the stress response is considered to be a rescue program to help to mitigate neuronal injury and to endow the cells with resistance to subsequent ischemic stress. The challenge now is to determine how the neuroprotection conferred by prior sublethal ischemia is achieved so that rational strategies can be developed to detect and manipulate gene expression in brain cells vulnerable to ischemia.4. Expansion of infarction may be caused by an apoptotic mechanism. Investigation of apoptosis may also help in designing novel molecular strategies to prevent ischemic cell death.5. Ischemia/reperfusion injury is accompanied by inflammatory reactions induced by neutrophils and monocytes/macrophages infiltrated and accumulated in ischemic areas. When the role of the inflammatory/immune systems in ischemic brain injury is revealed, new therapeutic targets and agents will emerge to complement and synergize with pharmacological intervention directed against glutamate and Ca2+ neurotoxicity.  相似文献   

13.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

14.
Mitochondria play a key role in various cell processes including ATP production, Ca2+ homeostasis, reactive oxygen species (ROS) generation, and apoptosis. The selective removal of impaired mitochondria by autophagosome is known as mitophagy. Cerebral ischemia is a common form of stroke caused by insufficient blood supply to the brain. Emerging evidence suggests that mitophagy plays important roles in the pathophysiological process of cerebral ischemia. This review focuses on the relationship between ischemic brain injury and mitophagy. Based on the latest research, it describes how the signaling pathways of mitophagy appear to be involved in cerebral ischemia.  相似文献   

15.
Recent evidence suggests that limb ischemic preconditioning (LIP) protects neurons against cerebral ischemia-reperfusion injury. However, the mechanisms of LIP are not well understood. Neuroglobin (Ngb) is a recently discovered globin that affords protection against hypoxic/ischemic brain injury. This study was performed to investigate the role of Ngb in the neuroprotection of LIP against brain ischemia and the involvements of mitochondria in the process. The rat global brain ischemic model was used, and the CA1 hippocampus was selected as the observational target. Ngb expression was investigated by RT-PCR and Western blot. Neuropathological evaluation was performed by thionin staining. Mitochondrial membrane potential (Δψm), Na+-K+-ATPase activity, and ultrastructure were examined by flow cytometry, spectrophotometry, and transmission electron microscopy, respectively. We also used Ngb antisense oligodeoxynucleotides (AS-ODNs) and Ngb inducer hemin to inhibit or mimic the effect of LIP. We found that LIP significantly up-regulated Ngb expression and protected neurons against ischemia. Furthermore, LIP effectively improved deterioration in the Δψm, mitochondrial Na+-K+-ATPase activity, and ultrastructure induced by cerebral ischemia. These effects of LIP were inhibited partly by Ngb AS-ODNs and mimicked by hemin. It could be concluded that up-regulation of Ngb expression played an important role in the neuroprotection induced by LIP, and the Ngb-mediated neuroprotection of LIP was, at least partly, associated with mitochondria.  相似文献   

16.
Prothymosin alpha (ProTα), a nuclear protein, is implicated in the inhibition of ischemia‐induced necrosis as well as apoptosis in the brain and retina. Although ProTα has multiple biological functions through distinct regions in its sequence, it has remained which region is involved in this neuroprotection. This study reported that the active core peptide sequence P30 (amino acids 49–78) of ProTα exerts its full survival effect in cultured cortical neurons against ischemic stress. Our in vivo study revealed that intravitreous administration of P30 at 24 h after retinal ischemia significantly blocks the ischemia‐induced functional damages of retina at day 7. In addition, P30 completely rescued the retinal ischemia‐induced ganglion cell damages at day 7 after the ischemic stress, along with partial blockade of the loss of bipolar, amacrine, and photoreceptor cells. On the other hand, intracerebroventricular (3 nmol) or systemic (1 mg/kg; i.v.) injection of P30 at 1 h after cerebral ischemia (1 h tMCAO) significantly blocked the ischemia‐induced brain damages and disruption of blood vessels. Systemic P30 delivery (1 mg/kg; i.v.) also significantly ameliorated the ischemic brain caused by photochemically induced thrombosis. Taken together, this study confers a precise demonstration about the novel protective activity of ProTα‐derived small peptide P30 against the ischemic damages in vitro and in vivo.  相似文献   

17.
In this study, we investigated the neuroprotective effects of paclitaxel in transient cerebral ischemia and possible regulatory mechanism of these neuroprotection. Our data showed that paclitaxel can down-regulate the increased MLK3, JNK3, c-Jun, Bcl-2, and caspase-3 phosphorylation induced by ischemia injury. Cresyl violet staining and immunohistochemistry results demonstrated that paclitaxel had neuroprotective effect against ischemia/reperfusion-induced neuronal cell death. These results indicated that paclitaxel has neuroprotection in ischemic injury through JNK3 signaling pathway and provided a novel possible drug in therapeutics of brain ischemia.  相似文献   

18.
Liu  Xia  Ruan  Zhi  Shao  Xing-cheng  Feng  Hong-xuan  Wu  Lei  Wang  Wei  Wang  Hong-min  Mu  Hong-yan  Zhang  Ru-jun  Zhao  Wei-min  Zhang  Hai-yan  Zhang  Nai-xia 《Neurochemical research》2021,46(3):686-698

28-O-caffeoyl betulin (B-CA) has been demonstrated to reduce the cerebral infarct volume caused by transient middle cerebral artery occlusion (MCAO) injury. B-CA is a novel derivative of naturally occurring caffeoyl triterpene with little information associated with its pharmacological target(s). To date no data is available regarding the effect of B-CA on brain metabolism. In the present study, a 1H-NMR-based metabolomics approach was applied to investigate the therapeutic effects of B-CA on brain metabolism following MCAO in rats. Global metabolic profiles of the cortex in acute period (9 h after focal ischemia onset) after MCAO were compared between the groups (sham; MCAO?+?vehicle; MCAO?+?B-CA). MCAO induced several changes in the ipsilateral cortex of ischemic rats, which consequently led to the neuronal damage featured with the downregulation of NAA, including energy metabolism dysfunctions, oxidative stress, and neurotransmitter metabolism. Treatment with B-CA showed statistically significant rescue effects on the ischemic cortex of MCAO rats. Specifically, treatment with B-CA ameliorated the energy metabolism dysfunctions (back-regulating the levels of succinate, lactate, BCAAs, and carnitine), oxidative stress (upregulating the level of glutathione), and neurotransmitter metabolism disturbances (back-regulating the levels of γ-aminobutyric acid and acetylcholine) associated with the progression of ischemic stroke. With the administration of B-CA, the levels of three phospholipid related metabolites (O-phosphocholine, O-phosphoethanolamine, sn-glycero-3-phosphocholine) and NAA improved significantly. Overall, our findings suggest that treatment with B-CA may provide neuroprotection by augmenting the metabolic changes observed in the cortex following MCAO in rats.

  相似文献   

19.
In this study, we investigated the neuroprotective effects of paclitaxel in transient cerebral ischemia and possible regulatory mechanism of these neuroprotection. Our data showed that paclitaxel can down-regulate the increased MLK3, JNK3, c-Jun, Bcl-2, and caspase-3 phosphorylation induced by ischemia injury. Cresyl violet staining and immunohistochemistry results demonstrated that paclitaxel had neuroprotective effect against ischemia/reperfusion-induced neuronal cell death. These results indicated that paclitaxel has neuroprotection in ischemic injury through JNK3 signaling pathway and provided a novel possible drug in therapeutics of brain ischemia.  相似文献   

20.
Recent studies show that Thioredoxin (Trx) possesses a neuronal protective effect and that Trx inactivation is closely related to cerebral ischemia injury. Peroxynitrite (ONOO) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in cerebral ischemia. The present study was conducted to validate whether treatment with recombinant human Trx-1 (rhTrx-1) would attenuate ONOO generation and oxidative/nitrative stress in focal transient cerebral ischemia. The results showed that intravenously administered rhTrx-1 (10 mg/kg) significantly improved neurological functions and reduced cerebral infarction and apoptotic cell death following cerebral ischemia. Neuronal ONOO formation was significantly attenuated after rhTrx-1 treatment. Moreover, rhTrx-1 resulted in a significant decrease in antioxidant capacity and p38 mitogen activated protein kinase (MAPK) activity in ischemic brain tissue. Furthermore, the suppression on ONOO formation by either rhTrx-1 or an ONOO scavenger uric acid reduced cerebral infarct size in mice subjected to cerebral ischemia. Peroxynitrite donor SIN-1 not only blocked the neuronal protection of rhTrx-1 but also markedly attenuated rhTrx-1-induced antioxidative/antinitrative effect. We concluded that rhTrx-1 exerts an antioxidative/antinitrative effect against cerebral ischemia injury by blocking ONOO and superoxide anion formation. These results provide the information that thioredoxin is much more likely to succeed as a therapeutic approach to diminish oxidative/nitrative stress-induced neuronal apoptotic cell death in the ischemic brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号