首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PKR-dependent autophagic degradation of herpes simplex virus type 1   总被引:2,自引:0,他引:2  
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function of eIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses.  相似文献   

2.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

3.
Autophagy is postulated to play a role in antiviral innate immunity. However, it is unknown whether viral evasion of autophagy is important in disease pathogenesis. Here we show that the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein ICP34.5 binds to the mammalian autophagy protein Beclin 1 and inhibits its autophagy function. A mutant HSV-1 virus lacking the Beclin 1-binding domain of ICP34.5 fails to inhibit autophagy in neurons and demonstrates impaired ability to cause lethal encephalitis in mice. The neurovirulence of this Beclin 1-binding mutant virus is restored in pkr(-/-) mice. Thus, ICP34.5-mediated antagonism of the autophagy function of Beclin 1 is essential for viral neurovirulence, and the antiviral signaling molecule PKR lies genetically upstream of Beclin 1 in host defense against HSV-1. Our findings suggest that autophagy inhibition is a novel molecular mechanism by which viruses evade innate immunity and cause fatal disease.  相似文献   

4.
Alexander DE  Leib DA 《Autophagy》2008,4(1):101-103
Autophagy functions in part as an important host defense mechanism to engulf and degrade intracellular pathogens, a process that has been termed xenophagy. Xenophagy is detrimental to the invading microbe in terms of replication and pathogenesis and many pathogens either dampen the autophagic response, or utilize the pathway to enhance their life cycle. Herpes simplex virus type 1 (HSV-1) counteracts the induction of xenophagy through its neurovirulence protein, ICP34.5. ICP34.5 binds protein phosphatase 1alpha to counter PKR-mediated phosphorylation of eIF2alpha, and also binds the autophagy-promoting protein Beclin 1. Through these interactions, ICP34.5 prevents translational arrest and down-regulates the formation of autophagosomes. Whereas autophagy antagonism promotes neurovirulence, it has no impact on the replication of HSV-1 in permissive cultured cells. As discussed in this article, this work raises a number of questions as to the mechanism of ICP34.5-mediated inhibition of autophagy, as well as to the role of autophagy antagonism in the lifecycle of HSV-1.  相似文献   

5.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

6.
Autophagy is now known to be an essential component of host innate and adaptive immunity. Several herpesviruses have developed various strategies to evade this antiviral host defense. Herpes simplex virus 1 (HSV-1) blocks autophagy in fibroblasts and in neurons, and the ICP34.5 protein is important for the resistance of HSV-1 to autophagy because of its interaction with the autophagy machinery protein Beclin 1. ICP34.5 also counteracts the shutoff of protein synthesis mediated by the double-stranded RNA (dsRNA)-dependent protein kinase PKR by inhibiting phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) in the PKR/eIF2α signaling pathway. Us11 is a late gene product of HSV-1, which is also able to preclude the host shutoff by direct inhibition of PKR. In the present study, we unveil a previously uncharacterized function of Us11 by demonstrating its antiautophagic activity. We show that the expression of Us11 is able to block autophagy and autophagosome formation in both HeLa cells and fibroblasts. Furthermore, immediate-early expression of Us11 by an ICP34.5 deletion mutant virus is sufficient to render the cells resistant to PKR-induced and virus-induced autophagy. PKR expression and the PKR binding domain of Us11 are required for the antiautophagic activity of Us11. However, unlike ICP34.5, Us11 did not interact with Beclin 1. We suggest that the inhibition of autophagy observed in cells infected with HSV-1 results from the activity of not only ICP34.5 on Beclin 1 but also Us11 by direct interaction with PKR.  相似文献   

7.
Poppers J  Mulvey M  Khoo D  Mohr I 《Journal of virology》2000,74(23):11215-11221
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.  相似文献   

8.
Autophagy has been established as a player in host defense against viruses. The mechanisms by which the host induces autophagy during infection are diverse. In the case of HSV type 1 (HSV-1), dsRNA-dependent protein kinase is essential for induction of autophagy in fibroblasts through phosphorylation of eukaryotic initiation factor 2α (eIF2α). HSV-1 counteracts autophagy via ICP34.5, which dephosphorylates eIF2α and inhibits Beclin 1. Investigation of autophagy during HSV-1 infection has largely been conducted in permissive cells, but recent work suggests the existence of a eIF2α-independent autophagy-inducing pathway in nonpermissive cells. To clarify and further characterize the existence of a novel autophagy-inducing pathway in nonpermissive cells, we examined different HSV and cellular components in murine myeloid cells for their role in autophagy. We demonstrate that HSV-1-induced autophagy does not correlate with phosphorylation of eIF2α, is independent of functional dsRNA-dependent protein kinase, and is not antagonized by ICP34.5. Autophagy was activated independent of viral gene expression, but required viral entry. Importantly, we found that the presence of genomic DNA in the virion was essential for induction of autophagy and, conversely, that transfection of HSV-derived DNA induced microtubule-associated protein 1 L chain II formation, a marker of autophagy. This occurred through a mechanism dependent on stimulator of IFN genes, an essential component for the IFN response to intracellular DNA. Finally, we observed that HSV-1 DNA was present in the cytosol devoid of capsid material following HSV-1 infection of dendritic cells. Thus, our data suggest that HSV-1 genomic DNA induces autophagy in nonpermissive cells in a stimulator of IFN gene-dependent manner.  相似文献   

9.
Autophagy has been intensively studied in herpes simplex virus type 1 (HSV-1), a human alphaherpesvirus. The HSV-1 genome encodes a well-known neurovirulence protein called ICP34.5. When the gene encoding this protein is deleted from the genome, the virus is markedly less virulent when injected into the brains of animal models. Subsequent characterization of ICP34.5 established that the neurovirulence protein interacts with BECN1, thereby inhibiting autophagy and facilitating viral replication in the brain. However, an ortholog of the ICP34.5 gene is lacking in the genomes of other closely related alphaherpesviruses, such as varicella-zoster virus (VZV). Further, autophagosomes are easily identified in the exanthem (rash) that is the hallmark of both VZV diseases—varicella and herpes zoster. Inhibition of autophagy leads to diminished VZV titers. Finally, no block is detected in studies of autophagic flux following VZV infection. Thus autophagy appears to be proviral during VZV infection while antiviral during HSV-1 infection. Because divergence to this degree is extremely unusual for 2 closely related herpesviruses, we postulate that VZV has accommodated its infectious cycle to benefit from autophagic flux, whereas HSV-1 has captured cellular immunomodulatory genes to inhibit autophagy.  相似文献   

10.
Mulvey M  Arias C  Mohr I 《Journal of virology》2006,80(15):7354-7363
Via careful control of multiple kinases that inactivate the critical translation initiation factor eIF2 by phosphorylation of its alpha subunit, the cellular translation machinery can rapidly respond to a spectrum of environmental stresses, including viral infection. Indeed, virus replication produces a battery of stresses, such as endoplasmic reticulum (ER) stress resulting from misfolded proteins accumulating within the lumen of this organelle, which could potentially result in eIF2alpha phosphorylation and inhibit translation. While cellular translation is exquisitely sensitive to ER stress-inducing agents, protein synthesis in herpes simplex virus type 1 (HSV-1)-infected cells is notably resistant. Sustained translation in HSV-1-infected cells exposed to acute ER stress does not involve the interferon-induced, double-stranded RNA-responsive eIF2alpha kinase PKR, and it does not require either the PKR inhibitor encoded by the Us11 gene or the eIF2alpha phosphatase component specified by the gamma(1)34.5 gene, the two viral functions known to regulate eIF2alpha phosphorylation. In addition, although ER stress potently induced the GADD34 cellular eIF2alpha phosphatase subunit in uninfected cells, it did not accumulate to detectable levels in HSV-1-infected cells under identical exposure conditions. Significantly, resistance of translation to the acute ER stress observed in infected cells requires HSV-1 gene expression. Whereas blocking entry into the true late phase of the viral developmental program does not abrogate ER stress-resistant translation, the presence of viral immediate-early proteins is sufficient to establish a state permissive of continued polypeptide synthesis in the presence of ER stress-inducing agents. Thus, one or more previously uncharacterized viral functions exist to counteract the accumulation of phosphorylated eIF2alpha in response to ER stress in HSV-1-infected cells.  相似文献   

11.
12.
13.
I Mohr  Y Gluzman 《The EMBO journal》1996,15(17):4759-4766
Novel suppressor variants of conditionally lethal HSV-1 gamma34.5 deletion mutants have been isolated which exhibit restored ability to grow on neoplastic neuronal cells. Deletion of the viral gamma34.5 genes, whose products share functional similarity with the cellular GADD34 gene, renders the virus non-neurovirulent and imposes a block to viral replication in neuronal cells. Protein synthesis ceases at late times post-infection and the translation initiation factor eIF2alpha is phosphorylated by the cellular PKR kinase [Chou et al. (1990) Science, 252, 1262-1266; (1995) Proc. Natl Acad. Sci. USA, 92, 10516-10520]. The suppressor mutants have overcome the translational block imposed by PKR. Multiple, independent isolates all contain rearrangements within a 595 bp element in the HSV-1 genome where the unique short component joins the terminal repeats. This alteration, which affects the production of the viral mRNA and protein from the Us11 and Us12 genes, is both necessary and sufficient to confer the suppressor phenotype on gamma34.5 mutant viruses. HSV-1 thus encodes a specific element which inhibits ongoing protein synthesis in the absence of the viral GADD34-like function. Since this inhibition involves the accumulation of phosphorylated eIF2alpha, the element identified by the suppressor mutations may be a discrete PKR activator. Activation of the PKR kinase thus does not proceed through a general, cellular 'antiviral' sensing mechanism. Instead, the virus deliberately activates PKR and encodes a separate function which selectively prevents the phosphorylation of at least one PKR target, eIF2alpha. The nature of this potential activator element, and how analogous cellular elements could affect PKR pathways which affect growth arrest and differentiation are discussed.  相似文献   

14.
Li Y  Zhang C  Chen X  Yu J  Wang Y  Yang Y  Du M  Jin H  Ma Y  He B  Cao Y 《The Journal of biological chemistry》2011,286(28):24785-24792
The ICP34.5 protein of herpes simplex virus type 1 is a neurovirulence factor that plays critical roles in viral replication and anti-host responses. One of its functions is to recruit protein phosphatase 1 (PP1) that leads to the dephosphorylation of the α subunit of translation initiation factor eIF2 (eIF2α), which is inactivated by infection-induced phosphorylation. As PP1 is a protein phosphatase with a wide range of substrates, the question remains to be answered how ICP34.5 directs PP1 to specifically dephosphorylate eIF2α. Here we report that ICP34.5 not only binds PP1 but also associates with eIF2α by in vitro and in vivo assays. The binding site of eIF2α is identified at amino acids 233-248 of ICP34.5, which falls in the highly homologous region with human gene growth arrest and DNA damage 34. The interaction between ICP34.5 and eIF2α is independent of the phosphorylation status of eIF2α at serine 51. Deletion mutation of this region results in the failure of dephosphorylation of eIF2α by PP1 and, consequently, interrupts viral protein synthesis and replication. Our data illustrated that the binding between viral protein ICP34.5 and the host eIF2α is crucial for the specific dephosphorylation of eIF2α by PP1. We propose that herpes simplex virus protein ICP34.5 bridges PP1 and eIF2α via their binding motifs and thereby facilitates the protein synthesis and viral replication.  相似文献   

15.
16.
The ICP34.5 protein of herpes simplex virus (HSV) is involved in many aspects of viral pathogenesis; promoting neurovirulence, inhibiting interferon-induced shutoff of protein synthesis, interacting with PCNA and TBK1, inhibiting dendritic cell (DC) maturation, and binding to Beclin 1 to interfere with autophagy. Because of its key role in neuropathogenicity, the γ34.5 gene is deleted in all oncolytic HSVs (oHSVs) currently in clinical trial for treating malignant gliomas. Unfortunately, deletion of γ34.5 attenuates virus replication in cancer cells, especially human glioblastoma stem cells (GSCs). To develop new oHSVs for use in the brain and that replicate in GSCs, we explored the effect of deleting the γ34.5 Beclin 1 binding domain (BBD). To ensure cancer selectivity and safety, we inactivated the ICP6 gene (UL39, large subunit of ribonucleotide reductase), constructing ICP6 mutants with different γ34.5 genotypes: Δ68HR-6, intact γ34.5; Δ68H-6, γ34.5 BBD deleted; and 1716-6, γ34.5 deleted. Multimutated Δ68H-6 exhibited minimal neuropathogenicity in HSV-1-susceptible mice, as opposed to Δ68H and Δ68HR-6. It replicated well in human glioma cell lines and GSCs, effectively killing cells in vitro and prolonging survival of mice bearing orthotopic brain tumors. In contrast, 1716 and 1716-6 barely replicated in GSCs. Infection of glioma cells with Δ68H-6 and 1716-6 induced autophagy and increased phosphorylation of eIF2α, while inhibition of autophagy, by Beclin 1 short hairpin RNA (shRNA) knockdown or pharmacological inhibition, had no effect on virus replication or phosphorylated eIF2α (p-eIF2α) levels. Thus, Δ68H-6 represents a new oHSV vector that is safe and effective against a variety of brain tumor models.  相似文献   

17.
Cassady KA 《Journal of virology》2005,79(14):8707-8715
Human cytomegalovirus (HCMV) attachment and entry stimulates the expression of cellular interferon-inducible genes, many of which target important cellular functions necessary for viral replication. Double-stranded RNA-dependent host protein kinase (PKR) is an interferon-inducible gene product that limits viral replication by inhibiting protein translation in the infected cell. It was anticipated that HCMV encodes gene products that facilitate the evasion of this PKR-mediated antiviral response. Using a deltagamma1 34.5 herpes simplex virus type 1 (HSV-1) recombinant that triggers PKR-mediated protein synthesis shutoff, experiments identified an HCMV gene product expressed in the initial hours of infection that allows continued protein synthesis in the infected cell. Recombinant HSV-1 viruses expressing either the HCMV TRS1 or IRS1 protein demonstrate that either of these HCMV gene products allows the deltagamma1 34.5 recombinant viruses to evade PKR-mediated protein shutoff and maintain late viral protein synthesis.  相似文献   

18.
As terminally differentiated vital cells, neurons may be specialized to fight viral infections without undergoing cellular self-destruction. The cellular lysosomal degradation pathway, autophagy, is emerging as one such mechanism of neuronal antiviral defence. Autophagy has diverse physiological functions, such as cellular adaptation to stress, routine organelle and protein turnover, and innate immunity against intracellular pathogens, including viruses. Most of the in vivo evidence for an antiviral role of autophagy is related to viruses that specifically target neurons, including the prototype alphavirus, Sindbis virus, and the α-herpesvirus, herpes simplex virus type 1 (HSV-1). In the case of HSV-1, viral evasion of autophagy is essential for lethal encephalitis. As basal autophagy is important in preventing neurodegeneration, and induced autophagy is important in promoting cellular survival during stress, viral antagonism of autophagy in neurons may lead to neuronal dysfunction and/or neuronal cell death. This review provides background information on the roles of autophagy in immunity and neuroprotection, and then discusses the relationships between autophagy and viral neurovirulence.  相似文献   

19.
Zhang C  Tang J  Xie J  Zhang H  Li Y  Zhang J  Verpooten D  He B  Cao Y 《FEBS letters》2008,582(2):171-176
ICP34.5, encoded by herpes simplex virus 1, is a protein phosphatase 1 (PP1) regulatory subunit that mediates dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). However, the mechanism of its action remains poorly understood. Here, we show that amino acid substitutions in the arginine-rich motif have differential effects on ICP34.5 activity. The phenotypes parallel with viral protein synthesis and cytopathic effects in virus infected cells. Besides the consensus PP1 binding motif, the Arg-motif appears to enhance the interaction between ICP34.5 and PP1. These results suggest that concerted action between the PP1 binding domain and the effector domain of ICP34.5 is crucial for eIF2alpha dephosphorylation and viral protein synthesis.  相似文献   

20.
As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号