首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Yue X  Song W  Zhang W  Chen L  Xi Z  Xin Z  Jiang X 《Autophagy》2008,4(5):641-649
Although generally acknowledged as a plasma membrane protein, the epidermal growth factor (EGF) receptor has been found in the nucleus and subcellular organelles. Recently, the mitochondrial localization of the EGF receptor (EGFR) was reported; nevertheless, the molecular mechanism underlying EGFR localization in mitochondria is largely unknown. Using immunofluorescence and immunoelectron microscopy, we observed that EGFR did localize within mitochondria. Moreover, EGFR mitochondrial translocation can be increased by rapamycin treatment in A431 cells and greatly reduced by the presence of 3-methyladenine (3-MA), an inhibitor of autophagy. The reduction of mitochondrial EGFR via autophagy inhibition is further confirmed by small interference RNA (siRNA), through which the essential protein Beclin 1 was depleted. Knocking down Beclin 1 markedly decreased the mitochondrial translocation of EGFR that was induced by rapamycin. We also noticed that the content of mitochondrial EGFR transfer is decreased when the cells are exposed to the apoptotic inducer etoposide. Additionally, either EGF treatment or EGFR knockdown by siRNA results in a greater decline of cell viability in cells possessing more mitochondrial EGFRs. Taken together, we conclude that EGFR mitochondrial localization is regulated by either autophagy or programmed cell death and is correlated with cell survival.  相似文献   

2.
Co-overexpression of the epidermal growth factor (EGF) receptor (EGFR) and c-Src frequently occurs in human tumors and is linked to enhanced tumor growth. In experimental systems this synergistic growth requires EGF-dependent association of c-Src with the EGFR and phosphorylation of Tyr-845 of the receptor by c-Src. A search for signaling mediators of Tyr(P)-845 revealed that mitochondrial cytochrome c oxidase subunit II (CoxII) binds EGFR in a Tyr(P)-845- and EGF-dependent manner. In cells this association involves translocation of EGFR to the mitochondria, but regulation of this process is ill-defined. The current study demonstrates that c-Src translocates to the mitochondria with similar kinetics as EGFR and that the catalytic activity of EGFR and c-Src as well as endocytosis and a mitochondrial localization signal are required for these events. CoxII can be phosphorylated by EGFR and c-Src, and EGF stimulation reduces Cox activity and cellular ATP, an event that is dependent in large part on EGFR localized to the mitochondria. These findings suggest EGFR plays a novel role in modulating mitochondrial function via its association with, and modification of CoxII.  相似文献   

3.
Zinc plays a role in autophagy and protects cardiac cells from ischemia/reperfusion injury. This study aimed to test if zinc can induce mitophagy leading to attenuation of mitochondrial superoxide generation in the setting of hypoxia/reoxygenation (H/R) in cardiac cells. H9c2 cells were subjected to 4?h hypoxia followed by 2?h reoxygenation. Under normoxic conditions, treatments of cells with ZnCl2 increased both the LC3-II/LC3-I ratio and GFP-LC3 puncta, implying that zinc induces autophagy. Further experiments showed that endogenous zinc is required for the autophagy induced by starvation and rapamycin. Zinc down-regulated TOM20, TIM23, and COX4 both in normoxic cells and the cells subjected to H/R, indicating that zinc can trigger mitophagy. Zinc increased ERK activity and Beclin1 expression, and zinc-induced mitophagy was inhibited by PD98059 and Beclin1 siRNA during reoxygenation. Zinc-induced Beclin1 expression was reversed by PD98059, implying that zinc promotes Beclin1 expression via ERK. In addition, zinc failed to induce mitophagy in cells transfected with PINK1 siRNA and stabilized PINK1 in mitochondria. Moreover, zinc-induced PINK1 stabilization was inhibited by PD98059. Finally, zinc prevented mitochondrial superoxide generation and dissipation of mitochondrial membrane potential (ΔΨm) at reoxygenation, which was blocked by both the Beclin1 and PINK1 siRNAs, suggesting that zinc prevents mitochondrial oxidative stress through mitophagy. In summary, zinc induces mitophagy through PINK1 and Beclin1 via ERK leading to the prevention of mitochondrial superoxide generation in the setting of H/R. Clearance of damaged mitochondria may account for the cardioprotective effect of zinc on H/R injury.  相似文献   

4.
Zhong J  Kong X  Zhang H  Yu C  Xu Y  Kang J  Yu H  Yi H  Yang X  Sun L 《PloS one》2012,7(6):e39378
CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER), nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.  相似文献   

5.
The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.  相似文献   

6.
The molecular mechanism underlying epidermal growth factor receptor (EGFR) localization in mitochondria remains largely unknown. Using immune electron microscopy, we validated that EGFR could be localized on either the outer or the inner membrane of mitochondria. Mutant receptor lacked amino acids 646-660 was flawed in migration onto the organelles, whereas the mutated receptor with a defective endocytosis showed a greater capability of moving onto mitochondria upon stimulation of epidermal growth factor (EGF). Gefitinib, an inhibitor of EGFR kinase, inhibited the receptor endocytosis after short time of treatment, yet, only reduced cell viability as well as the amount of mitochondrial EGFR after longer time of exposure. Moreover, the content of mitochondrial EGFR transfer was decreased when the cells were exposed to the apoptotic inducer etoposide. EGF-induced programmed cell death usually coincided with a decline in mitochondrial EGFR. These data indicated that the mitochondrial-localized EGFR is independent of its internalization and may be correlated with cell survival and participate in the ligand-induced programmed cell death.  相似文献   

7.
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.  相似文献   

8.
Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.  相似文献   

9.
Autophagy is a cellular self-digestion process that mediates protein quality control and serves to protect against neurodegenerative disorders, infections, inflammatory diseases and cancer. Current evidence suggests that autophagy can selectively remove damaged organelles such as the mitochondria. Mitochondria-induced oxidative stress has been shown to play a major role in a wide range of pathologies in several organs, including the heart. Few studies have investigated whether enhanced autophagy can offer protection against mitochondrially-generated oxidative stress. We induced mitochondrial stress in cardiomyocytes using antimycin A (AMA), which increased mitochondrial superoxide generation, decreased mitochondrial membrane potential and depressed cellular respiration. In addition, AMA augmented nuclear DNA oxidation and cell death in cardiomyocytes. Interestingly, although oxidative stress has been proposed to induce autophagy, treatment with AMA did not result in stimulation of autophagy or mitophagy in cardiomyocytes. Our results showed that the MTOR inhibitor rapamycin induced autophagy, promoted mitochondrial clearance and protected cardiomyocytes from the cytotoxic effects of AMA, as assessed by apoptotic marker activation and viability assays in both mouse atrial HL-1 cardiomyocytes and human ventricular AC16 cells. Importantly, rapamycin improved mitochondrial function, as determined by cellular respiration, mitochondrial membrane potential and morphology analysis. Furthermore, autophagy induction by rapamycin suppressed the accumulation of ubiquitinylated proteins induced by AMA. Inhibition of rapamycin-induced autophagy by pharmacological or genetic interventions attenuated the cytoprotective effects of rapamycin against AMA. We propose that rapamycin offers cytoprotection against oxidative stress by a combined approach of removing dysfunctional mitochondria as well as by degrading damaged, ubiquitinated proteins. We conclude that autophagy induction by rapamycin could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.  相似文献   

10.
We have previously shown that protein kinase Cε (PKCε) acts as an antiapoptotic protein and protects breast cancer MCF-7 cells from tumor necrosis factor-α (TNF)-mediated apoptosis. In the present study, we have investigated the mechanism by which PKCε inhibits TNF-induced cell death. Overexpression of wild-type PKCε (WT-PKCε) in MCF-7 cells decreased TNF-induced mitochondrial depolarization. Depletion of Bax by small interfering RNA (siRNA) attenuated TNF-induced cell death. Overexpression of PKCε in MCF-7 cells decreased dimerization of Bax and its translocation to the mitochondria. Knockdown of PKCε using siRNA induced Bax dimerization and mitochondrial translocation. PKCε was coimmunoprecipitated with Bax in MCF-7 cells. These results suggest that PKCε mediates its antiapoptotic effect partly by preventing activation and translocation of Bax to the mitochondria.  相似文献   

11.
12.
13.
Both the epidermal growth factor (EGF) and its receptor (EGFR) accumulate in the nucleoplasm during liver regeneration. This localization in a nonmembraneous compartment presents a challenge in that the standard form of EGFR is a transmembrane protein and suggests the existence of a variant, soluble form of EGFR. To investigate the localization of such a putative EGFR splice variant, we generated a transmembrane-devoid form of EGFR. We placed this transmembrane-negative [TM(−)] EGFR construct and full-length wild-type (wt) EGFR either in a retroviral transfection vector or in an inducible expression vector. Mouse 3T3 cells, which express endogenous EGFR, were transfected with the TM(−) EGFR construct. The expression of these TM(−) EGFR, detected with a specific antibody against human EGFR using a confocal laser-scanning microscope, was predominantly found in the cytoplasm with no nuclear localization. After an overnight incubation with EGF the TM(−) EGFR accumulated in the nucleus. In mouse NR6 cells, which lack endogenous EGFR, transfected TM(−) EGFR were found in the cytoplasm, but incubation with EGF did not result in a nuclear accumulation of TM(−) EGFR. However, NR6 cells transfected with both TM(−) EGFR and wt EGFR showed nuclear accumulation after EGF treatment. These results suggest that both the wt EGFR and the TM(−) EGFR are required for nuclear accumulation of TM(−) EGFR and may implicate a model of homotypic recognition and translocation of a splice variant of EGFR.  相似文献   

14.
《Autophagy》2013,9(4):523-541
Murine T cells exposed to rapamycin maintain flexibility towards Th1/Tc1 differentiation, thereby indicating that rapamycin promotion of regulatory T cells (Tregs) is conditional. The degree to which rapamycin might inhibit human Th1/Tc1 differentiation has not been evaluated. In the presence of rapamycin, T cell costimulation and polarization with IL-12 or IFN-α permitted human CD4+ and CD8+ T cell differentiation towards a Th1/Tc1 phenotype; activation of STAT1 and STAT4 pathways essential for Th1/Tc1 polarity was preserved during mTOR blockade but instead abrogated by PI3 kinase inhibition. Such rapamycin-resistant human Th1/Tc1 cells: (1) were generated through autophagy (increased LC3BII expression; phenotype reversion by autophagy inhibition via 3-MA or siRNA for Beclin1); (2) expressed anti-apoptotic bcl-2 family members (reduced Bax, Bak; increased phospho-Bad); (3) maintained mitochondrial membrane potentials; and (4) displayed reduced apoptosis. In vivo, type I polarized and rapamycin-resistant human T cells caused increased xenogeneic graft-versus-host disease (x-GVHD). Murine recipients of rapamycin-resistant human Th1/Tc1 cells had: (1) persistent T cell engraftment; (2) increased T cell cytokine and cytolytic effector function; and (3) T cell infiltration of skin, gut, and liver. Rapamycin therefore does not impair human T cell capacity for type I differentiation. Rather, rapamycin yields an anti-apoptotic Th1/Tc1 effector phenotype by promoting autophagy.  相似文献   

15.
Increased expressions of fatty acid synthase (FASN) and epidermal growth factor receptor (EGFR) are common in cancer cells. De novo synthesis of palmitate by FASN is critical for the survival of cancer cells via mechanisms independent of its role as an energy substrate. Besides the plasma membrane and the nucleus, EGFR can also localize at the mitochondria; however, signals that can activate mitochondrial EGFR (mtEGFR) and the functions of mtEGFR of cancer cells remain unknown. The present study characterizes mtEGFR in the mitochondria of cancer cells (prostate and breast) and reveals that mtEGFR can promote mitochondrial fusion through increasing the protein levels of fusion proteins PHB2 and OPA1. Activation of plasma membranous EGFR (pmEGFR) stimulates the de novo synthesis of palmitate through activation of FASN and ATP-citrate lyase (ACLy). In vitro kinase assay with isolated mitochondria shows that palmitate can activate mtEGFR. Inhibition of FASN blocks the mtEGFR phosphorylation and palmitoylation induced by EGF. Mutational studies show that the cysteine 797 is important for mtEGFR activation and palmitoylation. Inhibition of FASN can block EGF induced mitochondrial fusion and increased the sensitivity of prostate cancer cells to EGFR tyrosine kinase inhibitor. In conclusion, these results suggest that mtEGFR can be activated by pmEGFR through de novo synthesized palmitate to promote mitochondrial fusion and survival of cancer cells. This mechanism may serve as a novel target to improve EGFR-based cancer therapy.  相似文献   

16.
The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.  相似文献   

17.
Autophagy clears long-lived proteins and dysfunctional organelles and generates substrates for adenosine triphosphate production during periods of starvation and other types of cellular stress. Here we show that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage-associated molecular pattern molecule, is a critical regulator of autophagy. Stimuli that enhance reactive oxygen species promote cytosolic translocation of HMGB1 and thereby enhance autophagic flux. HMGB1 directly interacts with the autophagy protein Beclin1 displacing Bcl-2. Mutation of cysteine 106 (C106), but not the vicinal C23 and C45, of HMGB1 promotes cytosolic localization and sustained autophagy. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin1 and sustaining autophagy. Thus, endogenous HMGB1 is a critical pro-autophagic protein that enhances cell survival and limits programmed apoptotic cell death.  相似文献   

18.
Several lines of evidence suggest that the mechanism underlying drug-induced neuronal apoptosis is initiated by the increased production of reactive oxygen species (ROS). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin, has been shown to initiate an apoptotic cascade by increasing ROS in the dopaminergic neurons of the substantia nigra, leading to the morphological and physiological features associated with Parkinson’s disease. Recently, it has been reported that autophagy, a type of programmed cell death independent of the apoptotic cascade, also plays a role in neuronal damage. Although autophagy is negatively regulated by the mammalian target of rapamycin receptor (mTOR), there is some evidence showing a novel function for the anti-apoptotic protein Bcl-2. Bcl-2 is proposed to play a role in negatively regulating autophagy by blocking an essential protein in the signaling pathway, Beclin 1. Nevertheless, it is unclear whether autophagy is also correlated with apoptotic signaling in 1-methyl-4-phenylpyridinium (MPP+) toxicity. Therefore, we hypothesized that the MPP+ toxicity generally associated with initiating the apoptotic signaling cascade also increases an autophagic phenotype in neuronal cells. Using the SK-N-SH dopaminergic cell lines, we demonstrate that MPP+ increases the expression of microtubule-associated protein light chain 3 (LC3-II), an autophagosome membrane marker and the mTOR signaling pathway, and Beclin 1 while decreasing the Bcl-2 levels. Moreover, these expressions correlate with a decreased binding ratio between Bcl-2 and Beclin 1, in effect limiting the regulation of the downstream autophagic markers, such as LC3-II. Our results indicate that MPP+ can induce autophagy in SK-N-SH cells by decreasing the Bcl-2/Beclin 1 complex.  相似文献   

19.
Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.  相似文献   

20.
《Autophagy》2013,9(5):663-675
The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the proteasome inhibitor lactacystin induced an increase in p53 level and autophagy activity, whereas inhibition of p53 by pifithrin-α or small interference RNA (siRNA) of p53 attenuated the autophagy induction and increased protein aggregation. Furthermore, we found that the pretreatment with the autophagy inhibitor 3-methyladenine or Beclin 1 siRNA further activated p53 and its downstream apoptotic pathways, while the autophagy inducer rapamycin showed the opposite effects. Moreover, we demonstrated that rapamycin pretreatment increased tyrosine hydroxylase (TH) protein level in dopamine (DA) neurons, which was associated with its induction of autophagy to degrade aggregated proteins. Our results suggest that p53 can mediate proteasomal inhibition-induced autophagy enhancement which in turn can partially block p53 or its downstream mitochondria-dependent apoptotic pathways. Further autophagy induction with rapamycin protects DA neurons from lactacystin-mediated cell death by downregulating p53 and its related apoptotic pathways and by inducing autophagy to degrade aggregated proteins. Therefore, rapamycin may be a promising drug for protection against neuronal injury relevant to Parkinson’s disease (PD). Our studies thus provide a mechanistic insight into the functional link between the two protein degradation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号