共查询到20条相似文献,搜索用时 0 毫秒
1.
Ding Q Dimayuga E Martin S Bruce-Keller AJ Nukala V Cuervo AM Keller JN 《Journal of neurochemistry》2003,86(2):489-497
Increasing evidence suggests that proteasome inhibition plays a causal role in promoting the neurodegeneration and neuron death observed in multiple disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). The ability of severe and acute inhibition of proteasome function to induce neuron death and neuropathology similar to that observed in AD and PD is well documented. However, at present the effects of chronic low-level proteasome inhibition on neural homeostasis has not been elucidated. In order to determine the effects of chronic low-level proteasome inhibition on neural homeostasis, we conducted studies in individual colonies of neural SH-SY5Y cells that were isolated following continual exposure to low concentrations (100 nm) of the proteasome inhibitor MG115. Clonal cell lines appeared morphologically similar to control cultures but exhibited significantly different rates of both proliferation and differentiation. Elevated levels of protein oxidation and protein insolubility were observed in clonal cell lines, with all clonal cell lines being more resistant to neural death induced by serum withdrawal and oxidative stress. Interestingly, clonal cell lines demonstrated evidence for increased macroautophagy, suggesting that chronic low-level proteasome inhibition may cause an excessive activation of the lysosomal system. Taken together, these data indicate that chronic low-level proteasome inhibition has multiple effects on neural homeostasis, and suggests that studying the effects of chronic low-level proteasome inhibition may be useful in understanding the relationship between protein oxidation, protein insolubility, proteasome function, macroautophagy and neural viability in AD and PD. 相似文献
2.
Yuchen Feng 《Autophagy》2017,13(10):1617-1618
Damaged or aggregated proteins and organelles accumulate with age and contribute to various age-related pathologies including Alzheimer, Parkinson or Huntington diseases. In eukaryotic cells, there are 2 major pathways for degradation of the cytoplasm: The ubiquitin–proteasome system (UPS) and macroautophagy/autophagy. Both pathways can share the characteristic of initiating the process by ubiquitination of the substrate, but they utilize different ubiquitin receptors. In a paper described in a punctum in this issue, Lu et al. used the yeast Saccharomyces cerevisiae to demonstrate that the decision to use a particular pathway is made through a mechanism that depends on the receptors rather than the specific type of substrate ubiquitination. 相似文献
3.
Age-related macular degeneration (AMD) is a degenerative disease of the retina and the leading cause of blindness in the elderly. Retinal pigment epithelial (RPE) cell death and the resultant photoreceptor apoptosis are characteristic of late-stage dry AMD, especially geographic atrophy (GA). Although oxidative stress and inflammation have been associated with GA, the nature and underlying mechanism for RPE cell death remains controversial, which hinders the development of targeted therapy for dry AMD. The purpose of this study is to systematically dissect the mechanism of RPE cell death induced by oxidative stress. Our results show that characteristic features of apoptosis, including DNA fragmentation, caspase 3 activation, chromatin condensation and apoptotic body formation, were not observed during RPE cell death induced by either hydrogen peroxide or tert-Butyl hydroperoxide. Instead, this kind of cell death can be prevented by RIP kinase inhibitors necrostatins but not caspase inhibitor z-VAD, suggesting necrotic feature of RPE cell death. Moreover, ATP depletion, receptor interacting protein kinase 3 (RIPK3) aggregation, nuclear and plasma membrane leakage and breakdown, which are the cardinal features of necrosis, were observed in RPE cells upon oxidative stress. Silencing of RIPK3, a key protein in necrosis, largely prevented oxidative stress-induced RPE death. The necrotic nature of RPE death is consistent with the release of nuclear protein high mobility group protein B1 into the cytoplasm and cell medium, which induces the expression of inflammatory gene TNFα in healthy RPE and THP-1 cells. Interestingly, features of pyroptosis or autophagy were not observed in oxidative stress-treated RPE cells. Our results unequivocally show that necrosis, but not apoptosis, is a major type of cell death in RPE cells in response to oxidative stress. This suggests that preventing oxidative stress-induced necrotic RPE death may be a viable approach for late-stage dry AMD. 相似文献
4.
Suresh Kumar Seong Won Choi Yuexi Gu Michal Mudd Nicolas Dupont Shanya Jiang Ryan Peters Farzin Farzam Ashish Jain Keith A Lidke Christopher M Adams Terje Johansen Vojo Deretic 《The EMBO journal》2017,36(1):42-60
Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL‐1β is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R‐SNARE Sec22b to recruit cargo to the LC3‐II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome–lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP‐23 and SNAP‐29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway. 相似文献
5.
Sayak K Mitter Chunjuan Song Xiaoping Qi Haoyu Mao Haripriya Rao Debra Akin Alfred Lewin Maria Grant William Dunn Jr Jindong Ding Catherine Bowes Rickman Michael Boulton 《Autophagy》2014,10(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD. 相似文献
6.
《Autophagy》2013,9(11):1989-2005
Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD. 相似文献
7.
Yang Wang Yan-bo Li Jia-jing Yin Ying Wang Li-bo Zhu Guang-ying Xie Shang-ha Pan 《Autophagy》2013,9(3):272-277
T1D (type 1 diabetes) is an autoimmune disease characterized by lymphocytic infiltration, or inflammation in pancreatic islets called ‘insulitis.’ Comparatively speaking, T2D (type 2 diabetes) is traditionally characterized by insulin resistance and islet β cell dysfunction; however, a number of studies have clearly demonstrated that chronic tissue inflammation is a key contributing factor to T2D. The NLR (Nod-like receptor) family of innate immune cell sensors such as the NLRP3 inflammasome are implicated in leading to CASP1 activation and subsequent IL1B (interleukin 1, β) and IL18 secretion in T2D. Recent developments reveal a crucial role for the autophagy pathway under conditions of oxidative stress and inflammation. Increasingly, research on autophagy has begun to focus on its role in interacting with inflammatory processes, and thereby how it potentially affects the outcome of disease progression. In this review, we explore the pathophysiological pathways associated with oxidative stress and inflammation in T2D. We also explore how autophagy influences glucose homeostasis by modulating the inflammatory response. We will provide here a perspective on the current research between autophagy, inflammation and T2D. 相似文献
8.
Hanada S Harada M Abe M Akiba J Sakata M Kwan R Taniguchi E Kawaguchi T Koga H Nagata E Ueno T Sata M 《The journal of histochemistry and cytochemistry》2012,60(6):475-483
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery. 相似文献
9.
Vikramjit Lahiri 《Autophagy》2017,13(8):1259-1261
Mitophagy is a conserved and highly regulated process of selective degradation crucial in maintaining normal cellular physiology. Genetic defects and cellular aberrations affecting mitophagy have been associated with the development of Parkinson disease. In their recently published article (highlighted in a punctum in this issue of the journal) Hsieh et al. present a putative mitophagy marker, which serves as a mechanistic link between sporadic and familial Parkinson disease. 相似文献
10.
11.
Degradation in the lysosome/vacuole is not the final step of autophagy. In particular, for starvation-induced autophagy it is necessary to release the breakdown products back into the cytosol. However, some researchers ignore this last step and simply refer to the endpoint of autophagy as degradation, or perhaps even cargo delivery. In many cases this is not a serious issue; however, the analysis of autophagy's role in certain diseases makes clear that this can be a significant error. 相似文献
12.
13.
《Autophagy》2013,9(3)
In the August 2009 issue of Autophagy, I indicated that we were launching a new category of article, Protocols. At that time, I noted that we would ultimately be placing these articles on a new site online. Well, that time has finally arrived (see www.landesbioscience.com/journals/autophagy/protocols/ for links to these papers). Therefore, it seems appropriate for me to briefly distinguish among three types of community-oriented papers, Protocol, Toolbox and Resource. 相似文献
14.
Yuchen Feng 《Autophagy》2016,12(7):1071-1072
The molecular mechanism of macroautophagy/autophagy induction has been intensively studied, but little is known about downregulation of autophagy and how this process is restricted. In particular, how is autophagy maintained at an appropriate homeostatic level when cells are subjected to prolonged stress? In this study (see the related punctum in Autophagy 12–5), Liu et al. report a function of the CUL3-KLHL20 ubiquitin ligase in feedback regulation, leading to the downregulation of autophagy through the degradation of the ULK1 and PIK3C3/VPS34 complexes. 相似文献
15.
Perhaps the most complex step of macroautophagy is the formation of the double-membrane autophagosome. The majority of the autophagy-related (Atg) proteins are thought to participate in nucleation and expansion of the phagophore, and/or the completion of this compartment. Monitoring this part of the process is difficult, and typically involves electron microscopy analysis; however, unless three-dimensional tomography is performed, even this method cannot be used to easily determine if the phagophore is completely enclosed. Accordingly, a complementary approach is to examine the accessibility of sequestered cargo to exogenously added protease. This type of protease protection analysis has been used to monitor the formation of cytoplasm-to-vacuole targeting (Cvt) vesicles and autophagosomes by examining the protease sensitivity of precursor aminopeptidase I (prApe1). For determining the status of autophagosomes formed during nonselective autophagy, however, prApe1 is not the best marker protein. Here, we describe an alternative method for examining autophagosome completion using GFP-Atg8 as a marker for protease protection. 相似文献
16.
《Autophagy》2013,9(8):1245-1249
Due in part to the increasing number of links between autophagy malfunction and human diseases, this field has gained tremendous attention over the past decade. Our increased understanding of the molecular machinery involved in macroautophagy (hereafter autophagy) seems to indicate that the most complex step, or at least the stage of the process where the majority of the autophagy-related (Atg) proteins participate, is in the formation of the double-membrane sequestering vesicle. Thus, it is important to establish reliable approaches to monitor this specific process. One of the most commonly used methods is morphological analysis by electron microscopy of the cytosolic vesicles used in the cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy, or the single-membrane intralumenal products, termed Cvt or autophagic bodies, that are formed after the fusion of these vesicles with the yeast vacuole. This method, however, can be costly and time consuming, and reliable analysis requires expert input. Furthermore, it is extremely difficult to detect an incomplete autophagosome by electron microscopy because of the difficulty of obtaining a section that randomly cuts through the open portion of the phagophore. The primary Cvt pathway cargo, precursor amminopeptidase I (prApe1), is enwrapped within either a Cvt vesicle or autophagosome depending on the nutritional conditions. The proteolytic sensitivity of the prApe1 propeptide can therefore serve as a useful tool to determine the completion status of double-membrane Cvt vesicles/autophagosomes in the presence of exogenously added proteinase. Here, we describe an assay that examines the proteinase protection of prApe1 for determining the completion of Cvt vesicles/autophagosomes. 相似文献
17.
Xu Liu 《Autophagy》2016,12(5):894-895
The macroautophagy (hereafter autophagy) process involves de novo formation of double-membrane autophagosomes; after sequestering cytoplasm these transient organelles fuse with the vacuole/lysosome. Genetic studies in yeasts have characterized more than 40 autophagy-related (Atg) proteins required for autophagy, and the majority of these proteins play roles in autophagosome formation. The fusion of autophagosomes with the vacuole is mediated by the Rab GTPase Ypt7, its guanine nucleotide exchange factor Mon1-Ccz1, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. However, these factors are not autophagosome-vacuole fusion specific. We recently showed that 2 autophagy scaffold proteins, the Atg17-Atg31-Atg29 complex and Atg11, regulate autophagosome-vacuole fusion by recruiting the vacuolar SNARE Vam7 to the phagophore assembly site (PAS), where an autophagosome forms in yeast. 相似文献
18.
Although largely overlooked relative to the process of phagophore formation, the mechanism through which autophagosomes fuse with lysosomes is a critical aspect of macroautophagy that is not fully understood. In particular, this step must be carefully regulated to prevent premature fusion of an incomplete autophagosome (that is, a phagophore) with a lysosome, because such an event would not allow access of the partially sequestered cargo to the lysosome lumen. The identification of the autophagosome-associated SNARE protein STX17 (syntaxin 17) provided some clue in the understanding of this process. STX17 is recruited specifically to mature autophagosomes, and functions in mediating autophagosome-lysosome fusion by forming a complex with the Qbc SNARE SNAP29 and the lysosomal R-SNARE VAMP8. Additionally, STX17 plays a role in the early events of autophagy by interacting with the phosphatidylinositol 3-kinase complex component ATG14. Upon autophagy induction STX17 is strictly required for ATG14 recruitment to the ER-mitochondria contact sites, a critical step for the assembly of the phagophore and therefore for autophagosome formation. In their recent paper, Diao and collaborators now show that the ATG14-STX17-SNAP29 interaction mediates autophagosome-lysosome tethering and fusion events, thus revealing a novel function of ATG14 in the later steps of the autophagy pathway. 相似文献
19.
Xin Wen 《Autophagy》2016,12(6):905-906
The ubiquitin-proteasome system (UPS) and macroautophagy/autophagy are 2 main degradative routes, which are important for cellular homeostasis. In a study conducted by Marshall et al., the authors demonstrated that the UPS and autophagy converge in Arabidopsis (see the punctum in issue #11–10). In particular, they found that the 26S proteasome is degraded by autophagy, either nonselectively (induced by nitrogen starvation) or selectively (induced by proteasome inhibition). The selective phenotype is mediated through the proteasome subunit RPN10, which can bind both ubiquitin and ATG8. This newly identified autophagic degradation of the proteasome is termed “proteaphagy,” and the process reveals an interesting relationship between these degradative systems. 相似文献
20.
Klionsky DJ 《Autophagy》2012,8(3):291
In the August 2009 issue of Autophagy, I indicated that we were launching a new category of article, Protocols. At that time, I noted that we would ultimately be placing these articles on a new site online. Well, that time has finally arrived (see www.landesbioscience.com/journals/autophagy/protocols/ for links to these papers). Therefore, it seems appropriate for me to briefly distinguish among three types of community-oriented papers, Protocol, Toolbox and Resource. 相似文献