首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exercise induces autophagy in peripheral tissues and in the brain   总被引:1,自引:0,他引:1  
He C  Sumpter R  Levine B 《Autophagy》2012,8(10):1548-1551
We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.  相似文献   

2.
A single bout of exercise increases glucose uptake and fatty acid oxidation in skeletal muscle, with a corresponding activation of AMP-activated protein kinase (AMPK). While the exercise-induced increase in glucose uptake is partly due to activation of AMPK, it is unclear whether the increase of fatty acid oxidation is dependent on activation of AMPK. To examine this, transgenic mice were produced expressing a dominant-negative (DN) mutant of alpha(1)-AMPK (alpha(1)-AMPK-DN) in skeletal muscle and subjected to treadmill running. alpha(1)-AMPK-DN mice exhibited a 50% reduction in alpha(1)-AMPK activity and almost complete loss of alpha(2)-AMPK activity in skeletal muscle compared with wild-type littermates (WT). The fasting-induced decrease in respiratory quotient (RQ) ratio and reduced body weight were similar in both groups. In contrast with WT mice, alpha(1)-AMPK-DN mice could not perform high-intensity (30 m/min) treadmill exercise, although their response to low-intensity (10 m/min) treadmill exercise was not compromised. Changes in oxygen consumption and the RQ ratio during sedentary and low-intensity exercise were not different between alpha(1)-AMPK-DN and WT. Importantly, at low-intensity exercise, increased fatty acid oxidation in response to exercise in soleus (type I, slow twitch muscle) or extensor digitorum longus muscle (type II, fast twitch muscle) was not impaired in alpha(1)-AMPK-DN mice, indicating that alpha(1)-AMPK-DN mice utilize fatty acid in the same manner as WT mice during low-intensity exercise. These findings suggest that an increased alpha(2)-AMPK activity is not essential for increased skeletal muscle fatty acid oxidation during endurance exercise.  相似文献   

3.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

4.
Aimin Xu  Gary Sweeney 《Autophagy》2015,11(4):723-724
Autophagy can dictate changes in cell metabolism via numerous mechanisms. ADIPOQ/adiponectin has been extensively characterized to have beneficial metabolic effects, both via INS/insulin-sensitizing and INS-independent actions. Our recent work examined the regulation of skeletal muscle autophagy by ADIPOQ and the functional significance. We showed that ADIPOQ directly stimulates autophagic flux in cultured skeletal muscle cells via an AMPK-dependent signaling pathway leading to phosphorylation of ULK1 (Ser555). Pharmacological inhibition of autophagy or overexpressing an inactive mutant of ATG5 to create an autophagy-deficient cell model reduces INS sensitivity. A high-fat diet (HFD) does not induce skeletal muscle autophagy in Adipoq knockout (Ad-KO) mice, whereas it does in wild-type (WT) mice, although ADIPOQ replenishment in Ad-KO mice stimulates autophagy. Changes in skeletal muscle autophagy correlate well with peripheral INS sensitivity and glucose metabolism. Thus, ADIPOQ stimulates autophagic flux in skeletal muscle, which likely represents one important mechanism mediating multiple favorable metabolic effects.  相似文献   

5.
To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser2?3, Ser2?? and Ser3??, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.  相似文献   

6.
Exercise enhances insulin sensitivity in skeletal muscle, but the underlying mechanism remains obscure. Recent data suggest that alternatively activated M2 macrophages enhance insulin sensitivity in insulin target organs such as adipose tissue and liver. Therefore, the aim of this study was to determine the role of anti-inflammatory M2 macrophages in exercise-induced enhancement of insulin sensitivity in skeletal muscle. C57BL6J mice underwent a single bout of treadmill running (20 m/min, 90 min). Twenty-four hours later, ex vivo insulin-stimulated 2-deoxy glucose uptake was found to be increased in plantaris muscle. This change was associated with increased number of CD163-expressing macrophages (i.e. M2-polarized macrophages) in skeletal muscle. Systemic depletion of macrophages by pretreatment of mice with clodronate-containing liposome abrogated both CD163-positive macrophage accumulation in skeletal muscle as well as the enhancement of insulin sensitivity after exercise, without affecting insulin-induced phosphorylation of Akt and AS160 or exercise-induced GLUT4 expression. These results suggest that accumulation of M2-polarized macrophages is involved in exercise-induced enhancement of insulin sensitivity in mouse skeletal muscle, independently of the phosphorylation of Akt and AS160 and expression of GLUT4.  相似文献   

7.
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser(231) after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C(2)C(12) myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C(2)C(12) myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.  相似文献   

8.
Bradykinin can enhance skeletal muscle glucose uptake (GU), and exercise increases both bradykinin production and muscle insulin sensitivity, but bradykinin's relationship with post-exercise insulin action is uncertain. Our primary aim was to determine if the B2 receptor of bradykinin (B2R) is essential for the post-exercise increase in GU by insulin-stimulated mouse soleus muscles. Wildtype (WT) and B2R knockout (B2RKO) mice were sedentary or performed 60 minutes of treadmill exercise. Isolated soleus muscles were incubated with [3H]-2-deoxyglucose +/-insulin (60 or 100 microU/ml). GU tended to be greater for WT vs. B2RKO soleus with 60 microU/ml insulin (P=0.166) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). Both genotypes had significant exercise-induced reductions (P<0.05) in glycemia and insulinemia, and the decrements for glucose (approximately 14 %) and insulin (approximately 55 %) were similar between genotypes. GU tended to be greater for exercised vs. sedentary soleus with 60 microU/ml insulin (P=0.063) and was significantly greater for muscles with 100 microU/ml insulin (P<0.05). There were no significant interactions between genotype and exercise for blood glucose, plasma insulin or GU. These results indicate that the B2R is not essential for the exercise-induced decrements in blood glucose or plasma insulin or for the post-exercise increase in GU by insulin-stimulated mouse soleus muscle.  相似文献   

9.
The serine/threonine kinase Akt/PKB plays diverse roles in cells, and genetic studies have indicated distinct roles for the three Akt isoforms expressed in mammalian cells and tissues. Akt2 is a key signaling intermediate for insulin-stimulated glucose uptake and glycogen synthesis in skeletal muscle. Akt2 has also been shown to be activated by exercise and muscle contraction in both rodents and humans. In this study, we used Akt2 knockout mice to explore the role of Akt2 in exercise-stimulated glucose uptake and glycogen synthesis as well as intracellular signaling pathways that regulate glycogen metabolism in skeletal muscle. We found that Akt2 deficiency does not affect basal or exercise-stimulated glucose uptake or intracellular glycogen content in the soleus muscle. In addition, lack of Akt2 did not result in alterations in basal Akt Thr(308) or basal and contraction-stimulated glycogen synthase kinase-3beta (GSK-3beta) Ser(9) phosphorylation, glycogen synthase phosphorylation, or glycogen synthase activity. In contrast, in situ contraction failed to elicit normal increases in Akt T-loop Thr(308) phosphorylation and GSK-3alpha Ser(21) phosphorylation in tibialis anterior muscles from Akt2-deficient animals. Our data establish a key role for Akt2 in the regulation of GSK-3alpha Ser(21) phosphorylation with contraction and add genetic evidence to support the separation of the intracellular pathways regulated by insulin and exercise that converge on glucose uptake and glycogen synthesis in skeletal muscle.  相似文献   

10.
Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD)-fed mice. PKCβ-/- and wild-type mice were fed a HFD with or without exercise training. PKC protein expression, body and tissue weight change, glucose and insulin tolerance, metabolic rate, mitochondria size and number, adipose inflammation, and AKT activation were determined to evaluate insulin sensitivity and metabolic changes after intervention. PKCβ expression decreased in both skeletal muscle and liver tissue after exercise. Exercise and PKCβ deficiency can alleviate HFD-induced insulin resistance, as evidenced by improved insulin tolerance. In addition, fat accumulation and mitochondrial dysfunction induced by HFD were also ameliorated by both exercise and PKCβ deficiency. On the other hand, exercise had little effect on PKCβ-/- mice. Further, our data indicated improved activation of AKT, the downstream signal molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ deficiency blunted the difference between sedentary and exercised mice. These results suggest that downregulation of PKCβ contributes to exercise-induced improvement of insulin resistance in HFD-fed mice.  相似文献   

11.
Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.  相似文献   

12.
Training stimulates glucose uptake and metabolism by muscles independent of a rise in serum glucose. Whether this increased insulin action is associated with enhanced insulin binding in muscles is unknown. We studied the effect of 6 weeks of treadmill running on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis by the soleus muscle of Swiss Webster mice. Training was progressively increased. The in vitro studies using intact soleus preparations were done 48 h after the last exercise bout. Training increased insulin binding, insulin-stimulated uptake of 2-deoxy-D-glucose, and glycogenesis but not glycolysis in the soleus. Our data suggest that the enhanced glucose uptake and metabolism in muscles induced by exercise training are associated with an increase in insulin binding.  相似文献   

13.
14.
15.
Dysregulation of the proteasome has been documented in a variety of human diseases such as Alzheimer, muscle atrophy, cataracts etc. Proteolytic activity of 26 S proteasome is ATP- and ubiquitin-dependent. O-GlcNAcylation of Rpt2, one of the AAA ATPases in the 19 S regulatory cap, shuts off the proteasome through the inhibition of ATPase activity. Thus, through control of the flux of glucose into O-GlcNAc, the function of the proteasome is coupled to glucose metabolism. In the present study we found another metabolic control of the proteasome via cAMP-dependent protein kinase (PKA). Contrary to O-Glc-NAcylation, PKA activated proteasomes both in vitro and in vivo in association with the phosphorylation at Ser(120) of another AAA ATPase subunit, Rpt6. Mutation of Ser(120) to Ala blocked proteasome function. The stimulatory effect of PKA and the phosphorylation of Rpt6 were reversible by protein phosphatase 1 gamma. Thus, hormones using the PKA system can also regulate proteasomes often in concert with glucose metabolism. This finding might lead to novel strategies for the treatment of proteasome-related diseases.  相似文献   

16.
Skeletal muscle insulin resistance (IR) is closely linked to hyperglycemia and metabolic disorders. Regular exercise enhances insulin sensitivity in skeletal muscle, but its underlying mechanisms remain unknown. Sestrin3 (SESN3) is a stress-inducible protein that protects against obesity-induced hepatic steatosis and insulin resistance. Regular exercise training is known to increase SESN3 expression in skeletal muscle. The purpose of this study was to explore whether SESN3 mediates the metabolic effects of exercise in the mouse model of high-fat diet (HFD)-induced IR. SESN3?/? mice exhibited severer body weight gain, ectopic lipid accumulation, and dysregulation of glucose metabolism after long-term HFD feeding compared with the wild-type (WT) mice. Moreover, we found that SESN3 deficiency weakened the effects of exercise on reducing serum insulin levels and improving glucose tolerance in mice. Exercise training increased pAKT-S473 and GLUT4 expression, accompanied by enhanced pmTOR-S2481 (an indicator of mTORC2 activity) in WT quadriceps that were less pronounced in SESN3?/? mice. SESN3 overexpression in C2C12 myotubes further confirmed that SESN3 played an important role in skeletal muscle glucose metabolism. SESN3 overexpression increased the binding of Rictor to mTOR and pmTOR-S2481 in C2C12 myotubes. Moreover, SESN3 overexpression resulted in an elevation of glucose uptake and a concomitant increase of pAKT-S473 in C2C12 myotubes, whereas these effects were diminished by downregulation of mTORC2 activity. Taken together, SESN3 is a crucial protein in amplifying the beneficial effects of exercise on insulin sensitivity in skeletal muscle and systemic glucose levels. SESN3/mTORC2/AKT pathway mediated the effects of exercise on skeletal muscle insulin sensitivity.  相似文献   

17.
Body temperature and metabolic responses to 2 h treadmill exercise in dogs given glucose intravenously (25-30 mg.kg-1 X min-1 throughout the run) were compared with those measured in the same animals with elevated plasma FFA concentrations (soya bean oil ingestion + intravenous heparin) and in control experiments (24 h fasting). In comparison with control conditions enhanced glucose availability for the working muscles caused a reduction in the exercise-induced increases in both rectal (by 0.9 +/- 0.11 degree C) and muscle (by 0.9 +/- 0.16 degree C) temperatures, a lower rate of oxygen uptake (by 16%) and an elevated respiratory exchange ratio. A tendency towards enhanced body temperature responses to exercise, accompanied by increases in VO2 and cardiac frequency was noted in dogs with elevated plasma FFA concentrations as compared with the control animals. The estimated amount of heat effectively dissipated from the body, expressed as a fraction of heat load (thermoregulatory efficiency) was significantly higher in dogs infused with glucose (0.962 +/- 0.0035), than in the controls (0.947 +/- 0.0043) and those with elevated plasma FFA concentrations (0.931 +/- 0.0029). It is concluded that the increased contribution of carbohydrates to the energy yield during exercise results in a marked attenuation of hyperthermia, associated with a reduced metabolic rate and improved thermoregulatory efficiency.  相似文献   

18.
Prostaglandin generation and its inter-relation to the metabolic effects of insulin and prior exercise were examined in perfused muscle of fed rats. During a 60 min perfusion of the rat hindquarter, a substantial release of the prostaglandins PGF2 alpha, PGE2 and 6-oxoPGF1 alpha was observed. Blood cells present in the perfusate released these substances in negligible amounts indicating the prostaglandins were produced by the hindquarter. Addition of insulin to the perfusate increased both glucose uptake and the generation of PGE2 and 6-oxoPGF1 alpha. At 30 min after intense treadmill exercise, glucose and alpha-aminoisobutyric acid (AIB) uptake by the hindquarter were increased in the absence of added insulin, but prostaglandin release was not increased. Insulin further increased glucose and AIB uptake; however, in contrast with its effects in non-exercised rats, insulin no longer stimulated prostaglandin generation. Indomethacin (10 microM) added to the perfusate inhibited the release of PGF2 alpha and PGE2 by 90% and the release of 6-oxoPGF1 alpha by 54%. It had no effect on the stimulation of glucose uptake by either insulin or prior exercise. The data indicate that insulin increases prostaglandin synthesis by perfused rat muscle, and that prior exercise blocks this effect. They suggest that under the conditions studied prostaglandins do not mediate the effects of insulin or prior exercise on glucose uptake.  相似文献   

19.
Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing the tissue activity with blood activity of [18F]FDG. Exercise increased glucose uptake index by 77% in the patellar tendon (from 0.30 +/- 0.09 to 0.51 +/- 0.16, P = 0.03), by 106% in the quadriceps tendon (from 0.37 +/- 0.15 to 0.75 +/- 0.36, P = 0.02), and by 15-fold in the quadriceps femoris muscle (from 0.31 +/- 0.11 to 4.5 +/- 1.7, P = 0.005). The exercise-induced increase in the glucose uptake in neither tendon correlated with the increase in glucose uptake in the quadriceps muscle (r = -0.10, P = 0.87 for the patellar tendon and r = -0.30, P = 0.62 for the quadriceps tendon). These results show that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号