首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemia is known to potently stimulate autophagy in the heart, which may contribute to cardiomyocyte survival. In vitro, transfection with small interfering RNAs targeting Atg5 or Lamp-2 (an autophagy-related gene necessary, respectively, for the initiation and digestion step of autophagy), which specifically inhibited autophagy, diminished survival among cultured cardiomyocytes subjected to anoxia and significantly reduced their ATP content, confirming an autophagy-mediated protective effect against anoxia. We next examined the dynamics of cardiomyocyte autophagy and the effects of manipulating autophagy during acute myocardial infarction in vivo. Myocardial infarction was induced by permanent ligation of the left coronary artery in green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) transgenic mice in which GFP-LC3 aggregates to be visible in the cytoplasm when autophagy is activated. Autophagy was rapidly (within 30 min after coronary ligation) activated in cardiomyocytes, and autophagic activity was particularly strong in salvaged cardiomyocytes bordering the infarcted area. Treatment with bafilomycin A1, an autophagy inhibitor, significantly increased infarct size (31% expansion) 24 h postinfarction. Interestingly, acute infarct size was significantly reduced (23% reduction) in starved mice showing prominent autophagy before infarction. Treatment with bafilomycin A1 reduced postinfarction myocardial ATP content, whereas starvation increased myocardial levels of amino acids and ATP, and the combined effects of bafilomycin A1 and starvation on acute infarct size offset one another. The present findings suggest that autophagy is an innate and potent process that protects cardiomyocytes from ischemic death during acute myocardial infarction.  相似文献   

2.
Little is known about the association between autophagy and diabetic cardiomyopathy. Also unknown are possible distinguishing features of cardiac autophagy in type 1 and type 2 diabetes. In hearts from streptozotocin-induced type 1 diabetic mice, diastolic function was impaired, though autophagic activity was significantly increased, as evidenced by increases in microtubule-associated protein 1 light chain 3/LC3 and LC3-II/-I ratios, SQSTM1/p62 (sequestosome 1) and CTSD (cathepsin D), and by the abundance of autophagic vacuoles and lysosomes detected electron-microscopically. AMP-activated protein kinase (AMPK) was activated and ATP content was reduced in type 1 diabetic hearts. Treatment with chloroquine, an autophagy inhibitor, worsened cardiac performance in type 1 diabetes. In addition, hearts from db/db type 2 diabetic model mice exhibited poorer diastolic function than control hearts from db/+ mice. However, levels of LC3-II, SQSTM1 and phosphorylated MTOR (mechanistic target of rapamycin) were increased, but CTSD was decreased and very few lysosomes were detected ultrastructurally, despite the abundance of autophagic vacuoles. AMPK activity was suppressed and ATP content was reduced in type 2 diabetic hearts. These findings suggest the autophagic process is suppressed at the final digestion step in type 2 diabetic hearts. Resveratrol, an autophagy enhancer, mitigated diastolic dysfunction, while chloroquine had the opposite effects in type 2 diabetic hearts. Autophagy in the heart is enhanced in type 1 diabetes, but is suppressed in type 2 diabetes. This difference provides important insight into the pathophysiology of diabetic cardiomyopathy, which is essential for the development of new treatment strategies.  相似文献   

3.
Increase in the density of liver lysosomes after leupeptin administration was marked in starved rats but only slight in starved-refed rats. The levels of several intracellular enzymes in the liver lysosome fraction purified from leupeptin-treated rats were about 10 to 30 times more in starved rats than in refed rats. However, there was no difference between the intralysosomal levels of endocytosed FITC-labeled asialofetuin in starved and refed rats, indicating that refeeding after starvation markedly suppressed autophagy but not heterophagy in vivo. Immunohistochemical studies with cathepsin B and asialofetuin Fab'-peroxidase conjugates showed that refeeding after starvation markedly altered the cellular distribution of cathepsin B in the liver, resulting in a linear arrangement of the enzyme only on the periphery of hepatocytes. In contrast, endocytosed asialofetuin was found only in the periphery of hepatocytes of both starved and starved-refed rats. These results indicate that autophagy and heterophagy are regulated by different mechanisms in vivo.  相似文献   

4.
Cardiac structures and functions change with advanced age, but the underlying mechanisms are not well understood. Autophagy and apoptosis play important roles in the process of cardiac remodeling. This study was designed to explore changes in cell autophagy and apoptosis during age-related left ventricular remodeling and to determine whether the mitogen-activated protein kinase (MAPK) pathway is an underlying mechanism. Eight 5-month-old (adult group) and eight 24-month-old male C57bl/6 mice (aged group) were studied. The heart mass index, left ventricular mass index and hydroxyproline content of both groups were compared. Western Blotting was used to quantitate the protein expression of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, caspase-3, B-cell leukemia-2 (Bcl-2) and MAPKs in the left ventricles of adult and aged mice. Our results showed that the heart mass index, left ventricular mass index and hydroxyproline content in the left ventricles of the aged mice were increased significantly compared with the adult mice, indicating that left ventricular remodeling occurs with aging. The expression of LC3 and Beclin-1 in the left ventricles of aged mice were decreased significantly compared to adult mice. Meanwhile, the level of myocardial caspase-3 in adult mice remained the same in aged mice, and the level of myocardial Bcl-2 increased significantly in aged mice. There were no differences in the expression level of myocardial extracellular signal-regulated kinase 1/2 (ERK1/2), activated/phospho-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2) and p38 between aged and adult mice. However, the expression of myocardial activated/phospho-JNK1/2 increased significantly in aged mice, while activated/phospho-p38 decreased significantly. These findings indicate that autophagy decreases without a concurrent change in apoptosis during age-related left ventricular remodeling in mice. The MAPK pathway may be involved in the regulation of age-related left ventricular remodeling by modulating autophagy.  相似文献   

5.
Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38‐mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3‐II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3‐II and the content of both APs detected by Cyto‐ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin‐induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co‐transfection of GFP‐LC3B and RFP‐Lamp1 expression vectors. A colocalization of GFP‐LC3B and RFP‐Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38‐mediated regulation by PPADS completely abolished rapamycin‐induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes.  相似文献   

6.
The urinary bladder urothelium is subjected to mechanical forces during cycles of distension and contraction, and its superficial cells are constantly flushed by toxic urine. Yet, the urothelium shows a very slow turnover of cells and superficial cells are extremely long lived. Autophagy has a well-known role in tissue homeostasis and serves as a protective mechanism against cellular stress. Therefore, the presence of autophagy as one of possible processes of survival in an unpleasant environment and during long lifetime of superficial cells was examined in mouse urothelium. We detected and evaluated autophagic activity of superficial urothelial cells under normal and stress conditions, caused by short-term starvation of newborn and 24-h-starved adult mice. Immunolabeling and Western blotting of essential effectors of autophagy, LC3 and Beclin 1, showed a weak signal in superficial urothelial cells. On the other hand, ultrastructural analysis, which proved to be the most reliable method in our study, revealed the presence of autophagic vacuoles, some of them containing specific urothelial structures, fusiform vesicles. Quantitative analysis showed increased autophagy in newborn and starved mice in comparison to a low basic level of autophagy in the urothelium of normal mice. Interestingly, some superficial cells of adults and neonates exhibit intense immunoreactions against LC3 and Beclin 1 and the typical ultrastructural characteristics of autophagy-dependent cell death. We conclude that autophagy, despite low basic activity under physiological conditions, plays an important role in urothelial homeostasis and stability under stress.  相似文献   

7.
Autophagy is associated with luteal cells death during regression of the corpus luteum (CL) in some species. However, the involvement of autophagy or the association between autophagy and apoptosis in CL regression are largely unknown. Therefore, we investigated the role of autophagy in CL regression and its association with apoptosis. Ovaries were obtained from pseudopregnant rats at Days 2 (early), 7 (mid-), and 14 and 20 (late-luteal stage) of the pseudopregnancy; autophagy-associated protein (microtuble-associated protein light chain 3 [LC3]) was immunolocalized and its expression level was measured. Luteal cell apoptosis was evaluated by measuring cleaved caspase 3 expression. LC3 expression increased slightly from early to mid-luteal stage, with maximal levels detected at the late-luteal stage in steroidogenic luteal cells. The expression level of the membrane form of LC3 (LC3-II) also increased during luteal stage progression, and reached a maximum at the end point of late-luteal stage (Day 20). This pattern coincided with cleaved caspase 3 expression. Furthermore, LC3-II expression increased, as did levels of cleaved caspase 3 in luteal cells cultured with prostaglandin F(2alpha) known to induce CL regression. These findings suggest that luteal cell autophagy is directly involved in CL regression, and is correlated with increased apoptosis. In addition, autophagic processes were inhibited using 3-methyladenine or bafilomycin A1 to evaluate the role of autophagy in apoptosis induction. Inhibition of autophagosome degradation by fusion with lysosomes (bafilomycin A1) increased apoptosis and cell death. Furthermore, inhibition of autophagosome formation (3-methyladenine) decreased apoptosis and cell death, suggesting that the accumulation of autophagosomes induces luteal cell apoptosis. In conclusion, these results indicate that autophagy is involved in rat luteal cell death through apoptosis, and is most prominent during CL regression.  相似文献   

8.
《Autophagy》2013,9(4):462-472
Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) than cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control.  相似文献   

9.
小鼠(Mus musculus domesticus)原始卵泡形成在出生后3 d内进行得最剧烈,此时有大量卵母细胞丢失。出生后不久原始卵泡库就建立起来,新生鼠都会经历一段时间饥饿再摄入母乳营养,对出生后的子鼠饥饿处理时,出现了自噬和凋亡的动态变化,自噬和凋亡都可以影响细胞的存活,这很可能与卵母细胞的大量丢失有关。在本项研究中,将对照组子鼠正常母乳喂养,处理组子鼠与母鼠分开,完全不给予母乳。分别收取饥饿1.5 d与2 d子鼠的卵巢制作电镜切片,每组3只子鼠,每只子鼠3张电镜切片,每组共统计9张切片。在电镜下观察其形态变化。通过观察发现,饥饿1.5 d的子鼠卵巢与正常1.5d的子鼠卵巢相比,卵母细胞中的自噬小体数量显著增加。这表明,饥饿处理1.5d促进了卵母细胞的自噬,这可能有助于维持卵母细胞的形态及存活。饥饿处理2 d的子鼠卵巢显示出不同的结果。饥饿2 d的子鼠处于生命的临界阶段,已出现小部分个体死亡。存活子鼠卵巢的电镜形态学观察发现,与正常哺乳2 d的子鼠卵母细胞相比,饥饿2 d子鼠卵母细胞中自噬小体的数量显著减少,并出现了多数卵母细胞凋亡的现象,出现许多凋亡小体。本实验研究结果显示,...  相似文献   

10.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

11.
为评价富氢液(hydrogen-rich saline,HRS)对脓毒症小鼠心肌细胞线粒体自噬的调节及其对心功能障碍的治疗作用,选取72只雄性C57BL/6J小鼠作为研究对象,采用随机数字表法分为假手术组(Sham组)、假手术+富氢液组(Sham+HRS组)、脓毒症组(CLP组)、CLP+富氢液组(CLP+HRS组),每组18只。采用盲肠结扎穿孔法建立小鼠CLP模型。Sham+HRS组和CLP+HRS组分别于造模后1、6 h时腹腔注射富氢液10 mL·kg-1。每组随机取6只小鼠,于造模后24 h时收集小鼠颈动脉血样,采用ELISA法测定血液肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin-1β,IL-1β)、肌钙蛋白I(cardiac troponin I,cTnI)和肌酸激酶同工酶(creatine kinase MB,CK-MB)水平;于造模后24 h时取心肌组织,采用荧光素-荧光酶发光法检测ATP,荧光分光光度法检测线粒体膜电位(mitochondrial membrane potential,MMP)。造模后24 h采用Western blot法测定心肌组织线粒体自噬相关蛋白微管关联蛋白轻链3Ⅱ/轻链3Ⅰ(microtubule-associated protein 1 light/protein 3 light,LC3Ⅱ/LC3Ⅰ)和蛋白62(protein 62,P62)的表达水平。结果显示,与Sham组比较,CLP组血清TNF-α、IL-1β、cTnI和CK-MB水平升高,心肌ATP、MMP水平下降,心肌LC3Ⅱ/LC3Ⅰ表达水平上调,P62表达水平下调,差异有统计学意义(P<0.05);与CLP组比较,CLP+HRS组血清TNF-α、IL-1β、cTnI和CK-MB含量下降,心肌组织ATP、MMP水平升高,LC3Ⅱ/LC3Ⅰ表达水平进一步上调,P62表达进一步下调(P<0.05)。结果表明,富氢液对脓毒症小鼠心功能障碍的治疗作用可能是通过调节心肌细胞线粒体自噬实现的。研究旨在探讨富氢液对脓毒症小鼠心功能障碍的治疗作用及机制,以期为富氢液的临床转化提供理论依据。  相似文献   

12.
《Autophagy》2013,9(12):1782-1797
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2.  相似文献   

13.
Macroautophagy/autophagy is a self-degradation process that combats starvation. Lipids are the main energy source in kidney proximal tubular cells (PTCs). During starvation, PTCs increase fatty acid (FA) uptake, form intracellular lipid droplets (LDs), and hydrolyze them for use. The involvement of autophagy in lipid metabolism in the kidney remains largely unknown. Here, we investigated the autophagy-mediated regulation of renal lipid metabolism during prolonged starvation using PTC-specific Atg5-deficient (atg5-TSKO) mice and an in vitro serum starvation model. Twenty-four h of starvation comparably induced LD formation in the PTCs of control and atg5-TSKO mice; however, additional 24 h of starvation reduced the number of LDs in control mice, whereas increases were observed in atg5-TSKO mice. Autophagic degradation of LDs (lipophagy) in PTCs was demonstrated by electron microscopic observation and biochemical analysis. In vitro pulse-chase assays demonstrated that lipophagy mobilizes FAs from LDs to mitochondria during starvation, whereas impaired LD degradation in autophagy-deficient PTCs led to decreased ATP production and subsequent cell death. In contrast to the in vitro assay, despite impaired LD degradation, kidney ATP content was preserved in 48-h starved atg5-TSKO mice, probably due to increased utilization of ketone bodies. This compensatory mechanism was accompanied by a higher plasma FGF21 (fibroblast growth factor 21) level and its expression in the PTCs; however, this was not essential for the production of ketone bodies in the liver during prolonged starvation. In conclusion, lipophagy combats prolonged starvation in PTCs to avoid cellular energy depletion.  相似文献   

14.
目的:观察线粒体自噬在急性心梗(MI)早期的变化及对1型糖尿病(DM)小鼠心肌急性缺血损伤的影响。方法:将100只健康雄性C57BL/6小鼠随机分为5组,对照+假手术组(CS组);1型糖尿病+假手术组(DS组);对照+心肌梗死组(CMI组);1型糖尿病+心肌梗死组(DMI组);1型糖尿病+心肌梗死组+Parkin腺病毒过表达组(DMIPO组),每组20只。检测和比较各组小鼠的心脏功能,心肌梗死面积,心肌细胞凋亡,自噬小体含量以及心肌组织中Parkin和LC3的表达量变化。结果:与CS组相比,CMI组自噬小体含量增多,LC3II的表达量上调,Parkin的表达量明显上调(P0.05)。与CMI组比,DMI组小鼠心功能下降加剧,心梗面积增大,心肌细胞凋亡数量明显增加(P0.05),自噬水平未见明显升高。DMIPO组较DMI组自噬水平升高,心肌梗死面积减小(P0.05),心肌细胞凋亡数量减少(P0.05),心功能改善。结论:1型糖尿病通过抑制Parkin介导的心肌线粒体自噬增加心肌急性缺血损伤易感性,上调Parkin的表达可以减轻1型糖尿病时急性缺血性心肌损伤。  相似文献   

15.
Autophagy is originally named as a process of protein recycling. It begins with sequestering cytoplasmic organelles in a membrane vacuole called autophagosome. Autophagosomes then fuse with lysosomes, where the materials inside are degraded and recycled. To date, however, little is known about the role of autophagy in cancer therapy. In this study, we present that temozolomide (TMZ), a new alkylating agent, inhibited the viability of malignant glioma cells in a dose-dependent manner and induced G2/M arrest. At a clinically achievable dose (100 microM), TMZ induced autophagy, but not apoptosis in malignant glioma cells. After the treatment with TMZ, microtubule-associated protein light-chain 3 (LC3), a mammalian homologue of Apg8p/Aut7p essential for amino-acid starvation-induced autophagy in yeast, was recruited on autophagosome membranes. When autophagy was prevented at an early stage by 3-methyladenine, a phosphatidylinositol 3-phosphate kinase inhibitor, not only the characteristic pattern of LC3 localization, but also the antitumor effect of TMZ was suppressed. On the other hand, bafilomycin A1, a specific inhibitor of vacuolar type H(+)-ATPase, that prevents autophagy at a late stage by inhibiting fusion between autophagosomes and lysosomes, sensitized tumor cells to TMZ by inducing apoptosis through activation of caspase-3 with mitochondrial and lysosomal membrane permeabilization, while LC3 localization pattern stayed the same. These results indicate that TMZ induces autophagy in malignant glioma cells. Application of an autophagy inhibitor that works after the association of LC3 with autophagosome membrane, such as bafilomycin A1, is expected to enhance the cytotoxicity of TMZ for malignant gliomas.  相似文献   

16.
The effects of food deprivation on the hepatic level growth hormone receptor (GHR) were investigated in black seabream (Acanthopagrus schlegeli) both at the protein level (by radioreceptor assay) and at the mRNA level (by ribonuclease protection assay). Serum levels of growth hormone (GH) and triiodothyronine (T3) were also measured. Condition factor and hepatic proximate composition of the fish were also assessed. Significant decrease in hepatic GHR binding was recorded as early as on day 2 of starvation. On day 30 this decrease was even more pronounced, with the level in the starved fish reaching less than 20% the fed control level. A concomitant decrease in the hepatic GHR mRNA content was also noted during this period, with a progressive decrease from day 2 to day 30 of starvation. The extent of decrease in the mRNA content was less pronounced than the decrease in receptor binding, with the hepatic GHR mRNA content in the day 30 starved fish representing approximately 30% of the level in the fed control. In large contrast, serum GH level increased progressively during starvation. After 30 days of starvation, serum GH levels in the starved fish were more than three times the concentration found in the fed control. Serum T3 levels, on the other hand, decreased during starvation, with the difference reaching significance on day 15 and day 30. After 30 days of starvation, serum T3 levels in the starved fish were only approximately 40% the concentration found in the fed control. The hepatic lipid content exhibited an increasing trend during starvation. On day 30 the hepatic lipid content of the starved fish had doubled the level found in the fed control. However, the hepatic protein content did not exhibit much change during starvation. There was also a minor decrease in the moisture content of the liver during starvation, but the condition factor of the fish as a whole registered a gradual decrease during the course of food deprivation.  相似文献   

17.
The rate of oxygen consumption was investigated in fed larval, nymphal and adult Ornithodoros turicata ticks and in starved nymphal and adult ticks. Oxygen consumption rate of fed adult ticks increased with increasing temperature. The metabolic rate of adult ticks was affected by starvation whereby starved adult ticks showed a significantly lower oxygen consumption than their fed counterparts. The oxygen consumption rate of fed female ticks was significantly higher than that of fed males but, there was no significant difference between the oxygen consumption rates of starved female versus starved male ticks. Oxygen consumption of fed larvae was significantly greater than those of fed first through third instar nymphs. Fed and starved nymphal ticks as well as fed adult ticks ventilated continuously. In contrast, starved adults ventilated discontinuously. The ability to reduce metabolic rate, plus the capability to ventilate discontinuously allow O. turicata adults to cope with prolonged starvation.  相似文献   

18.
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.  相似文献   

19.
20.
Acute starvation of the wild-type of the nematode Caenorhabditis elegans depresses the level of cathepsin D by 65% within 4-8 h and the level of the thiol cathepsins Ce1 and Ce2 to about the same extent after 24 h. There is no parallel loss of lysosomal beta-glucosidase or beta-hexosaminidase activities. In strains which are chronically starved as a result of mutations which compromise feeding behaviour (unc-52) or nutrient uptake into the intestinal cells (daf-4), cathepsin D levels are decreased to about 15% of the level in fully fed wild-type animals. We suggest that the decline in the cathepsin D level results from autodigestion when alternative protein substrates are depleted in the lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号