首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
TOR, a central controller of cell growth   总被引:112,自引:0,他引:112  
Schmelzle T  Hall MN 《Cell》2000,103(2):253-262
Cell growth (increase in cell mass) and cell proliferation (increase in cell number) are distinct yet coupled processes that go hand-in-hand to give rise to an organ, organism, or tumor. Cyclin-dependent kinase(s) is the central regulator of cell proliferation. Is there an equivalent regulator for cell growth? Recent findings reveal that the target of rapamycin TOR controls an unusually abundant and diverse set of readouts all of which are important for cell growth, suggesting that this conserved kinase is such a central regulator.  相似文献   

3.
TOR, phosphatidylinositol 3-kinase, p70s6k, and 4E-BP1 have recently emerged as components of a major signalling pathway that is dedicated to protein translation and thus to cell growth. This pathway appears to be conserved, at least in part, in yeast, slime molds, plants, flies, and mammals. TOR and phosphatidylinositol 3-kinase control p70s6k and 4E-BP1, which, in turn, directly control the translation initiation machinery.  相似文献   

4.
Insulin signalling is a potent stimulator of cell growth and has been proposed to function, at least in part, through the conserved protein kinase TOR (target of rapamycin) [corrected]. Recent studies suggest that the tuberous sclerosis complex Tsc1-Tsc2 may couple insulin signalling to Tor activity [corrected]. However, the regulatory mechanism involved remains unclear, and additional components are most probably involved. In a screen for novel regulators of growth, we identified Rheb (Ras homologue enriched in brain), a member of the Ras superfamily of GTP-binding proteins. Increased levels of Rheb in Drosophila melanogaster promote cell growth and alter cell cycle kinetics in multiple tissues. In mitotic tissues, overexpression of Rheb accelerates passage through G1-S phase without affecting rates of cell division, whereas in endoreplicating tissues, Rheb increases DNA ploidy. Mutation of Rheb suspends larval growth and prevents progression from first to second instar. Genetic and biochemical tests indicate that Rheb functions in the insulin signalling pathway downstream of Tsc1-Tsc2 and upstream of TOR. Levels of rheb mRNA are rapidly induced in response to protein starvation, and overexpressed Rheb can drive cell growth in starved animals, suggesting a role for Rheb in the nutritional control of cell growth.  相似文献   

5.
6.
Isoproterenol, a beta-adrenergic receptor agonist, causes hypertrophy and hyperplasia of the rat parotid gland. The stimulation of parotid acinar cells to a growth phase is accompanied by a cell surface localization of the enzyme 4 beta-galactosyltransferase. Alpha-lactalbumin, a specific modifier protein for 4 beta-galactosyltransferase, when given subsequent to the initiation of isoproterenol treatment and the commencement of parotid enlargement, resulted in a termination of gland hypertrophy and DNA synthesis. Gland size did not, however, return to control levels with the continued injection of isoproterenol and alpha- lactalbumin. In contrast, the injection of alpha-lactalbumin in neonatal rats (7-14 days post-partum) stimulated parotid gland hypertrophy and DNA synthesis. This treatment also lead to the precocious expression of the major parotid gland salivary enzyme, amylase.  相似文献   

7.
8.
9.
Regulation of growth and proliferation in higher eukaryotic cells results from an integration of nutritional, energy, and mitogenic signals. Biochemical processes underlying cell growth and proliferation are governed by the phosphatidylinositol 3-kinase (PI3K) and target of rapamycin (TOR) signaling pathways. The importance of the interplay between these two pathways is underscored by the discovery that the TOR inhibitor rapamycin is effective against tumors caused by misregulation of the PI3K pathway. We review here recent data concerning the convergence of the PI3K and TOR pathways, the role of these pathways in cell growth and proliferation, and the regulation of growth by downstream TOR targets.  相似文献   

10.
11.
12.
13.
《Autophagy》2013,9(4):507-509
Cell growth–the primary determinant of cell size–has an intimate relationship with proliferation; cells divide only after they reach a critical size. Despite its developmental and medical significance, little is known about cellular pathways that mediate the growth of cells. Accumulating evidence demonstrates a role for autophagy–a mechanism of eukaryotic cells to digest their own constituents during development or starvation–in cell size control. Increasing autophagic activity by prolonged starvation, rapamycin treatment inhibiting TOR (target of rapamycin) signaling, or genetic intervention, causes cellular atrophy in worms, flies and mammalian cell cultures. In contrast, we have shown that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes, unc-51/Atg1 and bec-1/Atg6, confers reduced cell size. We argue that physiological levels of autophagy are required for normal cell size, whereas both insufficient and excessive levels of autophagy lead to retarded cell growth. Furthermore, we discuss data suggesting that the insulin/IGF-1 (insulin-like growth factor receptor-1) and TGFβ (transforming growth factor-beta) signaling systems acting as major growth regulatory pathways converge on autophagy genes to control cell size. Thus, autophagy may act as a central regulatory mechanism of cell growth.

Addendum to: Aladzsity I, Tóth ML, Sigmond T, Szabó E., Bicsák B, Barna J, Reg?s A, Orosz L, Kovács AL, Vellai T. Autophagy genes unc-51 and bec-1 are required for normal cell size in Caenorhabditis elegans. Genetics 2007; 177:655-60, DOI: 10.1534/genetics.107.075762  相似文献   

14.
The TOR kinases link nutrient sensing to cell growth   总被引:23,自引:0,他引:23  
  相似文献   

15.
Lee SB  Kim S  Lee J  Park J  Lee G  Kim Y  Kim JM  Chung J 《EMBO reports》2007,8(4):360-365
It has been proposed that cell growth and autophagy are coordinated in response to cellular nutrient status, but the relationship between them is not fully understood. Here, we have characterized the fly mutants of Autophagy-specific gene 1 (ATG1), an autophagy-regulating kinase, and found that ATG1 is a negative regulator of the target of rapamycin (TOR)/S6 kinase (S6K) pathway. Our Drosophila studies have shown that ATG1 inhibits TOR/S6K-dependent cell growth and development by interfering with S6K activation. Consistently, overexpression of ATG1 in mammalian cells also markedly inhibits S6K in a kinase activity-dependent manner, and short interfering RNA-mediated knockdown of ATG1 induces ectopic activation of S6K and S6 phosphorylation. Moreover, we demonstrated that ATG1 specifically inhibits S6K activity by blocking phosphorylation of S6K at Thr 389. Taken together, our genetic and biochemical results strongly indicate crosstalk between autophagy and cell growth regulation.  相似文献   

16.
17.
In humans, loss of TBC1D20 (TBC1 domain family, member 20) protein function causes Warburg Micro syndrome 4 (WARBM4), an autosomal recessive disorder characterized by congenital eye, brain, and genital abnormalities. TBC1D20-deficient mice exhibit ocular abnormalities and male infertility. TBC1D20 is a ubiquitously expressed member of the family of GTPase-activating proteins (GAPs) that increase the intrinsically slow GTP-hydrolysis rate of small RAB-GTPases when bound to GTP. Biochemical studies have established TBC1D20 as a GAP for RAB1B and RAB2A. However, the cellular role of TBC1D20 still remains elusive, and there is little information about how the functional loss of TBC1D20 causes clinical manifestations in WARBM4-affected children. Here we evaluate the role of TBC1D20 in cells carrying a null mutant allele, as well as TBC1D20-deficient mice, which display eye and testicular abnormalities. We demonstrate that TBC1D20, via its RAB1B GAP function, is a key regulator of autophagosome maturation, a process required for maintenance of autophagic flux and degradation of autophagic cargo. Our results provide evidence that TBC1D20-mediated autophagosome maturation maintains lens transparency by mediating the removal of damaged proteins and organelles from lens fiber cells. Additionally, our results show that in the testes TBC1D20-mediated maturation of autophagosomes is required for autophagic flux, but is also required for the formation of acrosomes. Furthermore TBC1D20-deficient mice, while not mimicking severe developmental brain abnormalities identified in WARBM4 affected children, display disrupted neuronal autophagic flux resulting in adult-onset motor dysfunction. In summary, we show that TBC1D20 has an essential role in the maturation of autophagosomes and a defect in TBC1D20 function results in eye, testicular, and neuronal abnormalities in mice implicating disrupted autophagy as a mechanism that contributes to WARBM4 pathogenesis.  相似文献   

18.
Regulation of cell growth by autophagy   总被引:1,自引:0,他引:1  
Cell growth-the primary determinant of cell size-has an intimate relationship with proliferation; cells divide only after they reach a critical size. Despite its developmental and medical significance, little is known about cellular pathways that mediate the growth of cells. Accumulating evidence demonstrates a role for autophagy-a mechanism of eukaryotic cells to digest their own constituents during development or starvation-in cell size control. Increasing autophagic activity by prolonged starvation, rapamycin treatment inhibiting TOR (target of rapamycin) signaling, or genetic intervention, causes cellular atrophy in worms, flies and mammalian cell cultures. In contrast, we have shown that in the nematode Caenorhabditis elegans mutational inactivation of two autophagy genes, unc-51/Atg1 and bec-1/Atg6, confers reduced cell size. We argue that physiological levels of autophagy are required for normal cell size, whereas both insufficient and excessive levels of autophagy lead to retarded cell growth. Furthermore, we discuss data suggesting that the insulin/IGF-1 (insulin-like growth factor receptor-1) and TGF-beta (transforming growth factor-beta) signaling systems acting as major growth regulatory pathways converge on autophagy genes to control cell size. Thus, autophagy may act as a central regulatory mechanism of cell growth.  相似文献   

19.
20.
Progesterone as a regulator of granulosa cell viability   总被引:2,自引:0,他引:2  
Progesterone (P4) prevents numerous cells, including uterine, mammary and ovarian cells, from undergoing apoptosis. Interestingly, P4 prevents apoptosis of ovarian granulosa cells (GCs), which do not express the classic nuclear P4 receptor. This review presents data that support a non-genomic action of P4 in granulosa cells. These studies were conducted using both primary rat granulosa cells and rat spontaneously immortalized granulosa cells (SIGCs). Specifically, these studies reveal that (1) 3H-P4 specifically binds to SIGCs; (2) an antibody directed against the ligand binding domain of the nuclear P4 receptor (C-262) detects a 60 kDa protein, which localizes to the plasma membrane and binds P4; and (3) treatment with C-262 blocks P4’s ability to maintain granulosa cell viability. Additional studies demonstrate that a protein kinase G (PKG) activator, 8-br-cGMP, mimics and PKG antagonists, Rp-8-pcCPT-GMP and KT5823, attenuate P4’s action. These studies support the concept that the 60 kDa P4 binding protein functions as membrane receptor for P4 which activates a PKG-dependent mechanism to regulate granulosa cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号